
Abstract

In order to ensure the continued, safe administration of pharmaceuticals, particularly those agents that have been
recently introduced into the market, there is a need for improved surveillance after product release. This is
particularly so because drugs are used by a variety of patients whose particular characteristics may not have been
fully captured in the original market approval studies. Even well-conducted, randomized controlled trials are likely
to have excluded a large proportion of individuals because of any number of issues. The digitization of medical
care, which yields rich and accessible drug data amenable to analytic techniques, provides an opportunity to
capture the required information via observational studies. We propose the development of an open, accessible
database containing properly de-identified data, to provide the substrate for the required improvement in phar-
macovigilance. A range of stakeholders could use this to identify delayed and low-frequency adverse events.
Moreover, its power as a research tool could extend to the detection of complex interactions, potential novel uses,
and subtle subpopulation effects. This far-reaching potential is demonstrated by our experience with the open
Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) intensive care unit database. The new
database could also inform the development of objective, robust clinical practice guidelines. Careful systematization
and deliberate standardization of a fully digitized pharmacovigilance process is likely to save both time and
resources for healthcare in general.

Limitations of Clinical Trials

In the quest for the safe and effective use of pharma-

ceuticals, there is a pressing need for improved surveillance to

reduce the risk of preventable morbidity and mortality after

products are released. Clearly, such pharmacovigilance rep-

resents a form of care optimization as postrelease safety

cannot be maximally assured even by excellent premarket

studies. This is particularly so because these agents are pre-

scribed to patient populations that are often not completely

represented in the original studies required for market ap-

proval. Randomized controlled trials (RCTs), the gold stan-

dard for defining drug efficacy and safety profiles, are often of

inadequate duration, are too narrow in indication and scope,

and consist of relatively few test subjects.1 Therefore, RCTs

are ill-equipped to fully unravel heterogeneity of treatment
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effect.2 In order to test the efficacy of an intervention, RCT

participants are specifically selected to form a homogenous

cohort, necessitating exclusion of patients whose comorbid-

ities might modulate the treatment effect. In highly cited

clinical trials, around 40% of identified patients with the

condition under consideration are not enrolled, principally

because of restrictive eligibility criteria.3 One review revealed

that only 35% of these studies reported enough information

to categorize the reasons for nonenrollment. For example, the

efficacy of warfarin for stroke prevention in patients with

atrial fibrillation is established as grade 1A evidence, but

many potential participants were excluded from these trials,

frequently because of the presence of comorbidities.4 Con-

sequently, there is insufficient understanding of the effec-

tiveness of many interventions in those groups who were

underrepresented in the clinical trials.

Other weaknesses of these trials include their limited ability

to identify low-frequency adverse events or long-term side

effects, as well as wide variations in the choice of compara-

tors, end points, duration, and size.5 Furthermore, drug–drug

interactions associated with com-

plex comorbidities are rarely studied

and ultimately impossible to iden-

tify within this study design. Results

frequently are reported and inter-

preted as a point estimate, and vari-

ability may be viewed as unhelpful

measurement error.6 However, this

variability may indicate markedly di-

verse treatment responses between

different patient subpopulations. An-

other problem is the lack of accessi-

bility of postmarket studies. As of

January 23, 2014, there were 159,814

postmarket studies registered with the National Institutes

of Health, but the results of fewer than 10% of these had

been made publicly available7 despite evidence suggesting

that many patients are willing to share their healthcare data

for research purposes.8 Furthermore, over one-third of drug

approvals between 2005 and 2012 were based on a single

trial. For the most part, there is simply insufficient evidence

with which to draw significant, clinically relevant conclusions.

These issues warrant the broadening of postmarket phar-

macovigilance to formulate comprehensive drug safety and

efficacy profiles.

Observational and Open Data
Approaches to Pharmacovigilance

Clinicians have become cognizant of the aforementioned

limitations of RCTs and the need to tailor treatment proto-

cols to the demographic characteristics and comorbidities of

patients. The requirement for a system of continuous learning

to address these knowledge gaps is increasingly acknowl-

edged.9 Given the limitations of clinical trials, postmarket

observational studies play an essential role in assessing the

true risk profile of drugs, devices, and interventions. While

the use of observational studies as a complement to RCTs

remains debated, we contend that the increasing richness and

accessibility of routine health records data, in conjunction

with advanced analytical techniques, strengthen the potential

complementary role of observational evidence.

The recent body of work from our laboratory supports this

position. Over the past decade, the Laboratory of Compu-

tational Physiology, Beth Israel Deaconess Medical Center

(BIDMC), and Philips Healthcare, with support from the

National Institute of Biomedical Imaging and Bioinformatics,

have partnered to build, maintain, and analyze the Multi-

parameter Intelligent Monitoring in Intensive Care (MIMIC)

database.10,11 The precursor of MIMIC was originally devel-

oped in the 1980s by Dr. Roger Mark for the analysis of

cardiac dysrhythmias. At that time, the norm was to privately

create closed databases, but Dr. Mark wisely determined that

an open model would accelerate and generally improve

learning from the clinical material.

This shared data have been ex-

tremely successful in stimulating

research interest and beneficial com-

petition, as well as serving as a re-

source for testing algorithms. The

initial success led to the develop-

ment of ongoing open databases,

including MIMIC, now in its sec-

ond version. Notably, this success

has depended on and benefited from

collaboration among a variety of ex-

pert users, including clinicians, re-

searchers, and technical specialists,

as well as endorsement from the hospital leadership. This

public-access database, which now holds clinical data from

over 60,000 stays in BIDMC intensive care units (ICUs), has

been meticulously de-identified and is freely shared online

with the research community via PhysioNet (www.physionet

.org/). The readers are hereby directed to the appendix sec-

tion and a review article that provides a detailed description

of the MIMIC database and how it came about.12

Analysis of MIMIC has deepened our understanding of het-

erogeneity between different subpopulations, for example, in

the treatment effect of red blood cell transfusion.13 By day 3

of treatment in an ICU, approximately 95% of patients have

abnormally low hemoglobin levels, and red blood cell trans-

fusions are frequently administered. These clinical practice

patterns have traditionally rested on personal intuition and the

habits of care givers rather than evidence. The appropriate

indications and dosage of this transfusion therapy are uncer-

tain. Studies reporting mortality and morbidity outcomes have

variably reported the effects as protective, harmful, or neutral.

How can such an important issue be approached and resolved?
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The MIMIC investigators hypothesized that patients’ ages,

comorbidities, and prior clinical interventions could modulate

the effect of transfusion on clinical outcomes. Although the

aggregate effect of transfusion on the entire cohort appeared to

be neutral, there were important distinctions between various

subpopulations. Younger transfusion recipients had higher

mortality rates than control patients after adjustment for

propensity to receive transfusion whereas older recipients had

lower 30-day and 1-year mortality rates than controls. Among

patients with heart disease, the outcomes were worse for those

who underwent transfusion. This study countered the per-

ception that transfusion in critically

ill patients may be uniformly harmful

or beneficial.

Another study used MIMIC to un-

cover association between ex-ante

use of selective serotonin reuptake

inhibitors and mortality in the ICU

for certain patient subsets.14 This

type of research that looks into the

effect of prior use of particular med-

ications on outcomes during the

course of ensuing conditions such as

critical illness is an example of clin-

ical questions best addressed by the targeted analysis of large

databases. A noteworthy strength of this study was its use of

directed acyclic graphs to display the proposed causal path-

ways that were captured in the analysis. The analytical tech-

niques and findings of these studies may serve as examples of

the detail of information provided by retrospective data an-

alyses that are not possible with traditional RCTs.

Pharmacovigilance can be thought of as a special use case or

subset of comparative effectiveness research (CER): phar-

macovigilance identifies outcomes that are interpreted as

‘‘adverse’’ (rather than effective) because of a drug, drug–

drug interaction, or drug–disease interaction. For decades,

the Food and Drug Administration (FDA) has relied on

voluntary reporting of adverse events by healthcare practi-

tioners and patients. This arrangement has demonstrated

many limitations, and awareness has been raised of its short-

comings as representing passive or ‘‘reactive surveillance.’’15 To

meet rising concerns, large-scale projects have been estab-

lished in recent years to develop active surveillance tools

through the use of routinely collected electronic health in-

formation. Mini-Sentinel, a pilot project of the FDA’s Sen-

tinel Initiative, uses a distributed data approach with a

centralized portal to collect aggregated de-identified results

and to distribute manually coded packages.16,17

There have been efforts to leverage the ‘‘big data’’ potential of

Mini-Sentinel, but these had notable limitations, in part be-

cause of the closed nature of the data. Seeking to obtain

insight into the risks associated with dabigatran, one of the

new generation of anticoagulant medications, the FDA de-

ployed Mini-Sentinel to compare the incidence of hemor-

rhage between patients on dabigatran and patients on the

more widely used and much cheaper warfarin.18 The advisory

announcement that ensued from the study stated that

bleeding was 1.8–3.0 times greater for warfarin than for da-

bigatran. However, the confidence intervals were not publi-

cized, and more importantly, the analysis was not adjusted

for age, gender, or any clinical differences between the patient

populations. Age and gender are established risk factors for

hemorrhage from anticoagulant use, and the indication for

anticoagulation may have differed significantly between the

two groups. Months after the ad-

visory announcement, the FDA re-

leased pages of bar charts depicting

the risk of hemorrhage stratified

into age and gender categories. But

no summary analysis was presented

to adjust for age and gender simul-

taneously, or for any clinical fac-

tors. Over the years after the release

of dabigatran, the FDA has failed

to leverage the potential of Mini-

Sentinel to clarify the associated risk

of bleeding.

A recent announcement by the FDA

suggests that help is needed to fully achieve the vision of an

active surveillance platform for pharmaceuticals. The FDA is

seeking partners to develop and monitor a database of elec-

tronic health records (EHRs) with the goal of expanding its

Sentinel Initiative in order to detect adverse events more

reliably and to identify predictive risk factors.19

There are examples of related initiatives that have been suc-

cessful. Maguire and Dhar had previously employed data

mining on a large scale using a medical and pharmacy claims

database to determine patterns of cost and quality.20 Another

example comes from the Mayo Clinic, which partnered with

Optum Labs in analyzing administrative claims and clinical

data from millions of patients.21 The research partnership has

performed numerous studies, including CER that involve

cardiac, diabetes, and anticoagulant medications.

While a predictive capability is an ideal goal of the system we

describe in this article, we would initially conceive pharma-

covigilance as an observational process. We propose the

target database to be the EHRs of all patients that contain

medication data as well as all other documented clinical in-

formation (e.g., vital signs, laboratory results, and provider

notes) (Fig. 1). While this kind of large, de-identified clinical

database does not currently exist, the concept is quickly

coming to fruition through such efforts as that of PCORI.22

Recently, two of the authors of this work reported on the use

of such a database for real-time decision support called dy-

namic clinical data mining (DCDM) via the integration of

medical big data, search engines, and EHRs (Fig. 2).23

‘‘A RECENT ANNOUNCEMENT
BY THE FDA SUGGESTS THAT

HELP IS NEEDED TO FULLY
ACHIEVE THE VISION OF AN

ACTIVE SURVEILLANCE
PLATFORM FOR

PHARMACEUTICALS.’’
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To illustrate an example, let us consider the possibility of

acute kidney injury as an unforeseen delayed adverse effect of

a new drug within a patient subset of a certain demographic

and with a specific comorbidity. How could such an adverse

effect be captured in an EHR-based pharmacovigilance sys-

tem? Our previously mentioned concept of DCDM performs

automatic searches of the universal de-identified EHR data-

base to determine prior outcomes and treatments in similar

patients in order to provide individualized decision support

for both the provider and the patient. An EHR-based phar-

macovigilance system will require an automated data mining

tool, analogous to the use of search engines in DCDM, that

would identify patterns of developing and completed anoma-

lies in populations. This tool would then report the observa-

tion to the appropriate group who would then conduct a

more rigorous analysis. The big data design would allow the

FIG. 1. Clinical care optimization: a big data model for efficient targeting of tests and treatments and vigilance for adverse events.

FIG. 2. Dynamic clinical data mining (reproduced with permission from JMIR Medical Informatics).
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system to detect adverse effects caused by a drug, drug–drug

interaction, and drug–disease interaction in populations not

well studied in RCTs such as the elderly and particular ethnic

and socioeconomic groups. So in our example, the phar-

macovigilance system would be sensitive enough to note a

rising incidence of acute kidney injury (predefined in the data

mining tool) even if it only occurred in Hispanic women over

80 years old with a certain comorbidity or who are concur-

rently on another specific drug.

Application of MIMIC to
Pharmacovigilance

The observational method of research that the FDA intends

to implement has already been accomplished in academic as

well as industrial institutions. In view of this established

success, it seems counterproductive to restrict access to a

database for pharmacovigilance to just a few stakeholders.

The MIMIC database, with its open source nature, may serve

as a model if the FDA seeks to maximize the benefits of its

initiative. The primary objective of this new database would

not be limited to pharmacovigilance, but will encompass a

wide variety of applications within healthcare. This approach

would reduce the risks of postmarket health crises by mon-

itoring events in real time. But its use should extend to the

more general optimization of clinical care, including CER, the

detection of complex interactions, potential novel uses, and

subtle subpopulation effects.

Given the labor-intensive nature of retrospective analyses as

currently conducted on MIMIC and similar databases, the

task of creating comprehensive profiles for each treatment or

intervention may be considered prohibitively difficult with-

out automation of many of the processes involved. One way

to surmount this barrier is to adopt common data storage

methods and advanced machine learning algorithms. A

common data storage method would facilitate seamless inte-

gration of clinical datasets for analyses that would yield results

in almost real time, rather than the

several months it takes to perform

these analyses by even the most ad-

vanced teams of clinicians and data

scientists. Like any technology in its

infancy, but especially one with the

ambition of creating robust clinical

guidelines, it is important to keep the

database open so that other meth-

odologies may be tested on the same

data to further develop, confirm, or

contest prior findings.

The success of MIMIC signals that a

large-scale, open-access healthcare

database is feasible, would be widely used, and would con-

tribute significantly to the advancement of medical knowl-

edge. Researchers of various professional backgrounds are

using MIMIC for analyses that include the assessment of

outcomes in patients prescribed specific medications or

nonpharmacologic interventions, in a wide variety of

clinical contexts, and for patients with different permuta-

tions of comorbidities. The history of this database shows

that its open nature accelerates the creation of new

knowledge and allows for the rigorous scrutiny of prior

research findings. Over 1,000 investigators from over 32

countries have unrestricted access to the de-identified

clinical data based on data use agreements (Roger Mark,

personal communication).

In practice, there are barriers to implementing this kind of

system. Indeed, the system may experience a ‘‘collective

action problem,’’ a situation where many stakeholders

stand to benefit from an action, but the cost for each in-

dividual stakeholder renders it difficult to undertake alone.

This may be relevant to the production of a large-scale

database if providers are reluctant to contribute their own

data. However, a solution to overcome a similar problem

was developed by a national leadership meeting at the

Department of Health and Human Services in 2011, in-

volving leaders from health plans, purchasers, hospitals,

physician specialty groups, and the pharmaceutical indus-

try.24 Although the focus was on clinical registries, the

recommendations can serve as helpful guideposts relevant

for the proposed database. For example, payment mecha-

nisms that mandate or incentivize participation in the open

database could be devised by the Center for Medicare and

Medicaid Services and private health plans. These groups

could also facilitate a standard data infrastructure that

supports sharing and querying of clinical data. Physicians,

medical specialty societies, and research institutions could

inform the process of selecting the critical data elements to

incorporate. By instilling appropriate financial and intrinsic

incentives for key stakeholders, implementing this open

database in a collaborative manner would be pragmatic and

feasible for all parties involved.

Heterogeneity
of Treatment Effect
and Clinical Practice
Guidelines

An active pharmacovigilance system

could and should extend beyond the

basic querying of large data sets. The

use of machine learning techniques to

mine EHRs in real time can uncover

complex relationships between phar-

maceuticals, devices, clinical context,

comorbidities, and patient demo-

graphic factors. The identification of these effects would

provide clinicians with the information necessary to more

‘‘BECAUSE OF THE ACTIVE
NATURE OF THIS APPROACH,
IT IS CLEAR THAT CLINICALLY

RELEVANT INFORMATION
WOULD BE GENERATED AT A

RAPID RATE AS NEW DATA
ARE COLLECTED AND

ANALYZED.’’
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efficiently categorize patients as regards who will benefit from,

be harmed by, or will neither benefit nor be harmed by the use

of particular interventions. Because of the active nature of this

approach, it is clear that clinically relevant information would

be generated at a rapid rate as new data are collected and

analyzed. When this process deploys techniques such as in-

strumental variables, and appropriate use of training and

testing datasets, it can have a high degree of validity. In some

cases, it would be appropriate to validate hypotheses in a

prospective, experimental but pragmatic manner. The asso-

ciated cost would be modest as compared to traditional RCTs

given the relative ease of data collection.25

Not only could such a system discover which individual patients

would be negatively affected by a given pharmaceutical or in-

tervention, but it could also identify that subpopulation of

patients who would benefit from a test or treatment of statis-

tically low efficacy (e.g., a specialized form of chemotherapy).

This use of clinical data to individualize tests and treatments is

referred to as phenomics and will supplement decision support

guided by pharmacogenetics and genomics. It is also possible

that there are common interventions for which a positive short-

term result is attained but longer term adverse effects manifest

themselves at a later date. As such, these outcomes may be

otherwise extremely difficult to connect with their true causes.

Finally, this system might be used to find novel indications for

currently available drugs, providing a fast track to authoriza-

tion for prescription of currently off-label uses. In this case, the

risk profile of the drug would have already been assessed over a

long period of time and in many clinical contexts.

A key implementation challenge is the protection of patient

privacy. The MIMIC database thoroughly de-identifies all

patient records. To fulfill the potential of this proposed open-

access database, it is also necessary

to link separate data sources. This is

hampered by the lack of a unique

patient identifier in the United

States. Many provider organizations

have developed reasonably reliable

data linkage algorithms based on

patient demographic information.

However, increased data linkage

renders the process of deidentif-

ication more difficult. One possible

approach is to formally regulate the

practice of data linkage, defining

what is legal and ethical, and to include patients in a public

forum that frames this policy.26

To fully utilize the capacity of this system, it would need to be

seamlessly integrated into the clinicians’ workflow. The most

likely method of integration would be within a patient’s EHR,

since currently it is the EHR that is populated with information

that is actionable and unique to the clinical context of the

documented healthcare encounter. A model for integrating this

approach into patient care is described in a recent article by

clinicians from Stanford University School of Medicine.27 When

treating a young girl with systemic lupus erythematosus and a

complex set of comorbidities, the published literature provided

insufficient guidance for clinical decision making. However,

clinicians were able to use immediate advanced text-searching

capabilities to query their institution’s electronic medical record

data warehouse to review the outcomes of similar patients. This

enabled them to adopt a data-supported approach to the

treatment decision.

It has heretofore been the usual practice for medical societies

to utilize their own expert opinion as the basis for formula-

tion of clinical practice guidelines within their respective

fields. However, this process has not always been fully evi-

dence based and, more worrisome, has been plagued by

conflicts of intellectual and financial interests.28 Ultimately,

the information system that we are proposing would repre-

sent a helpful additional resource for the formulation of

objective, robust, and outcome-based clinical guidelines.

An important development that the FDA can leverage in

expanding the scope of the Sentinel Initiative is the creation

of the National Patient-Centered Clinical Research Network

called PCORnet.22 It consists of 11 clinical data research

networks (CDRN) across the country that securely collect

health information during the routine course of patient care.

In contrast to the Sentinel Initiative’s distributed database

model, where data partners alone controlled access to their

data, data sharing across the network is integral to PCORnet

and will be accomplished using a variety of methods that

ensure confidentiality by preventing patient re-identification.

In addition, PCORnet also includes 18 patient-powered re-

search networks that will be operated and governed by groups

of patients who are interested in

sharing health information and

participating in research. The Scal-

able Collaborative Infrastructure for

a Learning Healthcare System, which

was built with open source modular

components, will be employed to

enable a queryable semantic data

model that plugs universally into the

point of care.29 If all goes well, by

September 2015, PCORnet will be a

giant repository of medical infor-

mation from 26 to 30 million

Americans. The size of one CDRN database is projected to be

at least 10 terabytes (Kenneth Mandl, personal communica-

tion). With the advent of cloud computing and efficient

parallel, distributed statistical algorithms for big data, such as

MapReduce and Hadoop,30 performing computationally in-

tensive analytics on terabytes of heterogeneous patient data

records is not just feasible, but scalable. The cost of such a

system will be driven primarily by the governance of its use

rather than the technology, and should be justifiable if it can

‘‘IF ALL GOES WELL, BY
SEPTEMBER 2015, PCORNET
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OF MEDICAL INFORMATION
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indeed support the type of research described in this article—

from pharmacovigilance to clinical care optimization.

Conclusions

It is likely that many stakeholders would benefit from the

creation of a de-identified and open patient EHR database. For

example, this active pharmacovigilance system would assist

pharmaceutical companies in their risk profile construction

and could be used to collect data on their products within

widely diverse clinical contexts, including those involving pa-

tients with comorbidities, and who were excluded in phase 3

clinical trials. This richer data warehousing approach could

help pharmaceutical companies comply more rapidly and ef-

fectively with FDA requirements on postmarket surveillance.

In addition, analysis of routinely collected clinical data might

yield cost savings compared to the bespoke data collection of

RCTs and many longitudinal epidemiological studies.

Because so many institutions, from academia to healthcare to

industry, can benefit from the use of the technology we have

described, it is logical to advocate implementation of these

systems within an open data framework. Active surveillance

need not be utilized exclusively by the FDA to make regulatory

decisions on whether or not to approve a pharmaceutical, and

for what conditions it should be approved. Ultimately, it is the

well-informed patients, providers, and payers that can mitigate

the harmful public health concerns associated with poorly

conceived or unduly influenced policy recommendations. The

open data framework would represent a public good by pro-

viding the pieces necessary to create viable and effective systems

for the creation of more fully evidence-based medicine, as well

as an efficient and all-encompassing system of clinical care

optimization. This should all be done in a context that allows

for the introduction of necessary elements of innovation as well

as supporting patterns of standardization. If this information

system is successfully planned and executed, including a proper

balance of patient and provider privacy with the necessary data

accessibility features, it could be a significant step toward broad

and seamless quality improvement in healthcare.
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