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a  b  s  t  r  a  c  t

Objectives: To reduce unnecessary lab testing by predicting when a proposed future lab test is
likely  to contribute information gain and thereby influence clinical management in patients
with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory
testing does not necessarily relate to better outcomes.
Design: Data preprocessing, feature selection, and classification were performed and an arti-
ficial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute
an  information gain. There were 11 input variables in total. Ten of these were derived from
bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood
pressure, and urine collections, as well as infusion products and transfusions. The final
input variable was a previous value from one of the eight lab tests being predicted: calcium,
PTT,  hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each
test  was a binary framework defining whether a test result contributed information gain or
not.
Patients: Predictive modeling was applied to recognize unnecessary lab tests in a real world
ICU  database extract comprising 746 patients with gastrointestinal bleeding.
Main results: Classification accuracy of necessary and unnecessary lab tests of greater than
80%  was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the
outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement
from  previously reported similar studies with average performance 37% by [1–3].
Conclusions: Reducing frequent lab testing and the potential clinical and financial impli-
cations are an important issue in intensive care. In this work we  present an artificial
intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data
from 746 patients with gastrointestinal bleeding, and eleven measurements, we demon-
strate  high accuracy in predicting the likely information to be gained from proposed future
lab  testing for eight common GI related lab tests. Future work will explore applications of
this  approach to a range of underlying medical conditions and laboratory tests.
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1.  State  of  the  art

Laboratory testing occurs frequently in hospitalized patients
[4]. This is especially so for patients in intensive care, where
frequent blood draws are associated with general phlebotomy
complications [1,5]. While part of this testing reflects changes
in the intrinsic critical status of ICU patients, other tests are
run by default, following general guidelines and not driven by
patient-specific clinical questions [6,7]. Excessive use of labo-
ratory blood tests increases resource utilization, contributes to
blood loss, and may  lead to incorrect diagnosis and treatment.
In addition, laboratory tests in the ICU are sometimes obtained
without a physician order, which hinders proper documen-
tation [1]. However, modifying test-ordering practices in the
ICU is challenging, mainly because of the pre-assumption that
critical patients take a benefit from frequent testing, the ease
of blood drawing from indwelling arterial and central venous
catheters, and the difficulty of implementing durable changes
of practice in a multidisciplinary environment such as the ICU.

Studies [8] and [9] have shown that general ward admis-
sions average 1.1 draws per day per patient, extracting 12.4 ml
of blood per day, resulting in 175 ml  of blood drawn per hospi-
talization. These numbers are increased for an average ICU
admission where there are 3.4 draws per day per patient,
and 762.2 ml  for the entire admission, and even more  for ICU
patients with an arterial line inserted, where there are 4.0
draws per day per patient, and 944 ml  during the whole admis-
sion. Depending on the patient’s condition and the underlying
reasons for admission, the cumulative amount of blood drawn
for laboratory testing purposes might warrant transfusion
replacement, an expensive and risky practice in itself.

Among the reasons for over-testing, one may  find that
many  tests are ordered as part of a panel. Many factors con-
tribute to this practice, including lack of awareness of the
consequences of over-testing, arising from the medical culture
promoting “more visible” care, the medico-legal environment
and financial incentives arising from a fee-for-service reim-
bursement scheme [10]. Previous studies have shown that a
significant percentage of the tests requested are medically
unnecessary [11].

New guidelines for laboratory testing in surgical ICU
patients have been defined to enhance the decision-making
process for a test requirement, limit unnecessary testing and
provide appropriate documentation of physician orders. In
[1] it was concluded that decreasing the number of tests is
not associated with additional morbidity, and decreasing the
number of tests may  decrease blood transfusions. Overall,
in [1] it was found that the number of laboratory tests per-
formed decreased by 37%. The reduction in the number of
specific laboratory tests targeted by the guidelines paralleled
the overall results. Blood glucose, arterial blood gas, chem-
istry, coagulation tests, and cardiac enzymes decreased by
51.4, 43.9, 37.6, 30.5, and 23.2%, respectively. The most impor-
tant finding of [1] is that the introduction of new laboratory
testing guidelines in a surgical ICU resulted in a significant
decrease of the number of tests performed, and a significant
increase in the number of tests obtained with a proper physi-
cian order. These results, sustained over time, were associated
with no detectable morbidity, and may  have resulted in a

decrease of red blood cell transfusions. Other research works
about unnecessary lab tests reduction have obtained similar
results [2,3].

In related research [12], hematological monitoring data
were interpolated by cubic spline and the interpolated data
were estimated from their correlation with actual data by
way  of a leave-one-out cross validation (LOOCV). Further-
more,  an attractor plot was applied as time series analysis in
order to clarify the tendency of the interpolated hematologi-
cal monitoring data. The hematological data of three patients
who had received S-1 (a drug that is being studied for its
ability to enhance the effectiveness of fluorouracil and pre-
vent gastrointestinal side effects caused by fluorouracil when
treating cancer) administration over 2 years period were inves-
tigated. White blood cell (WBC) count, red blood cell (RBC)
count, hemoglobin (Hgb), hematocrit (Hct), mean corpuscular
hemoglobin (MCH), mean corpuscular hemoglobin concentra-
tion (MCHC), platelets, coefficient of variation of the red blood
cell distribution width (RDW-CV), platelet distribution width
(PDW) and mean platelet volume (MPV) were interpolated by
cubic spline. Those lab tests with small variances, such as RBC,
were well predicted by this method. However, tests with higher
variances, such as WBC, MCHC, PLT, and PDW were poorly
predicted. Cubic spline was the best approach of various inter-
polation methods in this study. The importance of [12] relies
in the fact that it is possible to predict future values of lab tests
even using very rudimentary models.

A further laboratory risk is false positives associated with
over-testing [13,14]. The probability of false positives (lab
results out of the normal range, when in fact the real values
are normal) is dependent on many  things including laboratory
equipment, employee training and correct phlebotomy tech-
nique. However, the incidence of false positives increases with
the number of tests run [13]. For example, if a given lab test
randomly misclassifies people as diseased at a 1% rate (i.e. the
test is 99% accurate), then the probability of having a false pos-
itive in the healthy population after an arbitrary 50 lab tests
is

Pw(n) = 1 − [Pr(n)]n (1)

Pw(50) = 1 − [0.99]50 = 0.40

where n is the number of lab tests, Pw(n) is the probability of
obtaining one wrong result (in this case, a false positive) in
n lab tests and Pr(n) is the probability of obtaining inaccurate
result in a given lab test. One strategy to reduce this increasing
probability of obtaining false positives is to avoid testing when
no additional information is expected or, in other words, to
reduce n.

2.  Objectives

The objective of this paper is to propose a strategy to reduce
unnecessary lab testing in the ICU. This is a retrospective study
using data acquired from intensive care unit (ICU) patients.
In this paper, we  consider a specific group of patients at the
ICU, gastrointestinal bleeding patients (GI bleeds). Although
there might be different criteria for testing that evaluates the
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evolution of patients with GI hemorrhage, domain experts
defined eight specific lab tests that are important to assess
the response to delivered care: hematocrit (Hct), hemoglobin
(Hgb), platelets, calcium, lactate, partial prothrombin time
(PTT), international normalized ratio (INR) for blood clotting,
and fibrinogen.

For those 8 lab tests, we  analyze which of them provide a
gain of information. A series of thresholds for normal ranges
are defined for each lab (see Section 3.5), and a given test is
considered to provide an information gain if its value goes
beyond the defined thresholds, and considered not a gain of
information otherwise. We  hypothesize that by using artifi-
cial intelligence we  would be able to find information in other
variables that could tell us if a test would provide a gain of
information or not. In this paper, the method proposed for the
eight lab tests is explained in Section 3.5.

In this paper, we  use the fuzzy modeling approach pro-
posed by Takagi and Sugeno (TS), with rules If–Then rules that
represents local input-output relations of a nonlinear system
[15,16]. In application domains that involve a large amount of
data with uncertainty, such as medicine or business, TS fuzzy
models can serve as a useful tool for generating fuzzy rules or
discovery knowledge in database, since almost all nonlinear
dynamical systems can be represented by TS fuzzy models
to a high degree of precision [17,18]. We  choose TS models
because of their ability to express the local dynamics of each
fuzzy implication (rule) by a linear system model. The overall
fuzzy model of the system is achieved by fuzzy “blending” of
the linear system models. This means that a nonlinear prob-
lem can be solved by individual linear rules that are then
combined in a nonlinear fashion. Since TS models perform
well both with linear and nonlinear classifications/predictions
resulting in transparent rules (see Section 3.8), we preferred
them over decision trees, bayesian and neural networks
[19–21].

3.  Methods

3.1.  Dataset

In this study, an ICU database named MIMIC II was used.
MIMIC  II is a publicly available database. However, the authors
further received IRB exemption from Beth Israel Deaconess
Medical Center (BIDMC) IRB board in June 2010, in Boston,
MA,  USA. MIMIC  II was created as part of a Bioengineering
Research Partnership (BRP) grant from the National Institute
of Biomedical Imaging and Bioengineering entitled Integrating
Data, Models and Reasoning in Intensive Care (RO1-EB001659).
MIMIC  II has been collected since 2001 at BIDMC including
high frequency sampled data of bedside monitors, clinical
data (laboratory tests, physicians’ and nurses’ notes, imaging
reports, medications and billing codes like ICD9, DRG and CPT)
and demographic data [22]. All data were appropriately de-
identified [23]. As this is being written, MIMIC II continues to
evolve with new versions being posted on the PhysioNet web
site (http://www.physionet.org/). The version 2.6, used in this
work, contains a total of 40,426 patients.

Table 1 – Characteristics of the variables used as inputs
for the models.

Input variables Mean ± S.D. Units

Heart rate 86.58 ± 17.83 [beats/min]
Oxygen saturation

(SpO2)
97.33  ± 4.40 [%]

Respiratory rate 19.85 ± 6.14 [breaths/min]
Temperature 97.97 ± 4.05 [F]
Arterial blood

pressure
113.08  ± 28.70 [mm Hg]

Intravenous
infusions

944.87 ± 1165 [ml]

Packed red blood cell
transfusions

61.14 ± 174.80 [ml]

Packed fresh frozen
plasma
transfusions

23.91  ± 96.86 [ml]

Platelets
transfusions

11.24 ± 60.17 [ml]

Urine output 0.02 ± 0.06 [cm3/min]

3.2.  Modeling  inputs

Table 1 shows the characteristics of the subset of variables
used as information sources for modeling in this work. Five
bedside monitor trends (heart rate, respiratory rate, O2 satura-
tion, temperature and arterial blood pressure) as well as urine
output collections, intravenous infusions volumes and packed
red blood cells, fresh frozen plasma and platelets transfusions
were used as inputs for the predictive models. Transfusions
of packed red blood cells, packed platelets and fresh frozen
plasma, were added as inputs as their effect on lab results is
clinically important.

3.3.  Modeling  outputs

Hematocrit, hemoglobin, partial prothrombin time (PTT),
fibrinogen, lactate, platelets, INR and calcium are the variables
routinely tested among GI bleeds, and were considered as the
outcomes to predict in this work. We  note that these eight lab
tests are components to three panels of laboratory tests, and
that the three panels sum up to more than 30 individual tests,
only a few of which are therefore relevant to this subset of
patients [24]. Characteristics of the eight lab tests are shown
in Table 2.

3.4.  Subset  for  modeling

After defining the inputs and outputs required for modeling,
the target subset of patients was selected using the following
inclusion criteria:

• patients 18 years or older;
• patients with ICD9 codes related to gastrointestinal bleed-

ing (15);
• patients with at least one measurement for each of the 5

bedside monitor trends;
• patients with more  than one measurement of at least one

of the lab tests proposed as outcomes.
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Table 2 – Characteristics of lab tests considered as outcomes for modeling purposes.

Outcomes Mean ± S.D. Units Mean tests per patient per
admission (max–min)

Calcium 8.30 ± 0.89 [mg/dl] in serum or plasma 9.42 (1–134)
PTT 45.69 ± 25.07 Partial thromboplastin time [s] 9.55 (1–131)
INR 1.70 ± 0.93 ratio of sample’s PTT to normal PT 13.22 (1–130)
Hematocrit 29.55 ± 4.09 [% volume fraction] of blood (%) 14.75 (1–186)
Hemoglobin 10.07 ± 1.46 [mg/dl] in blood 9.53  (1–124)
Fibrinogen 272.20 ± 149.43 [mg/dl] in platelet poor plasma 2.47 (1–64)
Lactate 3.29 ± 3.33 [mol/ml] in blood 4.81 (1–126)
Platelets 178.33 ± 143.52 [#/ml] in blood 10.37 (1–141)

The flow chart of patients’ inclusion criteria used to define
the subset of patients considered is depicted in Fig. 1.

3.5.  Modeling  strategy

We  utilized expert intensivists’ opinion to define the out-
come framework. This framework is binary and dichotomizes
lab results into information gain or no information gain cat-
egories. This is not the same as routine reference ranges
reported on lab reports as normal or abnormal, as a falling
hematocrit still bounded within normal range is an impor-
tant information gain for GI bleeding patients. The outcome
framework is as follows:

• Gain of information (positive cases) when there is a drop d
in the value of the lab test, or when those values are under
or over certain critical lower or upper thresholds, TL and TU

(this last when applicable), respectively (Table 3).

• No gain of information (negative cases) viz: as per the above,
if the variations were below the previously defined thresh-
olds and drops.

The values of d, TL and TU (Table 3) used in this work corre-
spond to conventional limits defined for normality in clinical
practice [25].

Gain of information was defined as a subset of lab results
that require clinical action. This means that, according to gen-
eral guidelines [25], specific actions have to be taken, or the
values are relevant enough to keep a close eye on the patient’s
evolution. The series of thresholds for normal ranges defined
for each lab (see Section 3) are used in this work in such a way
that a given test is considered to provide an information gain if
its value goes beyond the defined thresholds, and considered
not a gain of information otherwise.

Fig. 1 – Flow chart of patients’ inclusion criteria used to define the subset of patients considered in this work, using MIMIC
II database.
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Table 3 – Thresholds used for the definition of gain/no gain of information for each lab test and resulting number of tests
considered relevant.

Outcome variable TL TU d Number of relevant tests
(% of total tests)

Calcium 8.4 10.2 0.5 5724 (58.74)
PTT 18 35 2 5425 (57.16)
INR – 1.5 0.2 3830  (43.27)
Hematocrit 35 50 3 8745 (55.97)
Hemoglobin 12 18 1 4809 (47.87)
Fibrinogen 150 – 10 245 (16.17)
Lactate 0 2 0.2 2550 (51.24)
Platelets 150 – 10 5872 (53.58)

3.6.  Workflow  for  lab  test  ordering  decision-making

We  simulated two different approaches for ordering lab tests.
In the first process, clinicians collate the immediate previous
lab value with other data, to decide if new lab tests are needed.
Fig. 2a shows this approach, which we term online.

In the second, clinicians collate the first lab value of the
morning with other clinical data to decide if new lab tests are
needed. Fig. 2b shows this approach which we term morning.

Finally, we  predicted the 8 outcomes through the last
two  approaches only using data during periods in which the
patient was receiving transfusions. This was done mainly
under the suspicion that actively bleeding patients would not
present drops in their lab values when transfused (their values
would probably remain constant), but they should be consid-
ered relevant because of the patient’s condition.

3.7.  Knowledge  discovery  process

Knowledge Discovery in Databases (KDD) is an interactive
and iterative process [26–28], involving numerous steps, which
aims to discover hidden patterns and/or useful information in
large datasets that do not express those patterns easily. The
main role of the KDD process in this work is to predict the
relevancy of a set of lab tests for gastrointestinal bleeding ICU
patients, based on existing data specific to the patient. The rel-
evancy of a given test is assessed in terms of the information
it would add, that could change management.

The preprocessing applied to the raw dataset consisted of
correcting misalignments and missing data, and selecting the
most predictive variables.

According to [29], misalignments can be corrected using
one variable in the dataset as a template, and shifting the data

points of other variables to align sampling times. In this work,
each lab test was used as the template to unshift the values of
all the other variables, as it defines the points for which predic-
tions are required. Although [29] proposes to use the variable
with the highest sampling rate (in this dataset it corresponds
to heart rate, with a mean sampling time of 0.76 h), in this work
it would create an excessive amount of points for which the
lab tests are not expected to be measured (lab tests have an
average sampling time of 10.34 h). As proposed in [14], all the
existing entries are shifted to the closest template alignment
location, and values are then obtained through an interpola-
tion strategy using the template variable as a time reference.
The values for the new sampling times were obtained through
cubic interpolation, as suggested by [29]. Missing data were
classified and imputed according to the strategy suggested in
[29].

In data modeling, a usual practice is to use independent
randomly selected subsets of data to train, test and validate
the models [30]. In this way,  the results obtained through vali-
dation can be considered as the performance of the obtained
models in real new data. In this work, the dataset was first
randomly divided into two equal parts, one for the feature
selection process (FS dataset) and the other for the model
selection (MS dataset). This was done to select the relevant
features and to assess the model’s performances over inde-
pendent datasets.

The subsets of features were defined over the FS dataset
by randomly selecting the train (60%), test (30%) and vali-
dation (10%) sets from the FS dataset; the subset of features
resulting in the highest accuracy for the validation set was
selected.

Data reduction involves finding those variables with use-
ful information to model and predict the pursued outcome. A

Fig. 2 – Schematic representation of the input/output configurations used for the modeling of each lab test: (a) online and (b)
morning configurations.
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forward selection process was use in this work to reduce data
dimensionality and to find the predictive variables [31].

A leave-one-out cross-validation (LOOCV) process was used
to select the best model, by using a subset 10% of the MS
dataset, defined as the validation set, and the remaining 90%
as the training set [30]. The performance criterion used in this
work to select the best model was the area under the ROC
curve (AUC), as used by [31].

3.8.  Fuzzy  modeling

The prediction task proposed in this paper was performed
using fuzzy modeling, due to the nonlinear nature of much
medical physiology, and many  studies demonstrating good
suitability and performance with databases [32–36]. An addi-
tional motivation for using fuzzy modeling is the easily
understandable rules that are generated after classifying data,
which is useful for medical interpretation and guidelines cre-
ation.

Fuzzy modeling is a tool that allows an approximation of
non-linear systems when there is little or no previous knowl-
edge of the system to be modeled. A detailed description of
fuzzy logic and modeling can be found in [36]. Briefly, fuzzy
models use rules and logical connectives to establish relations
between the features defined to derive the model. A fuzzy clas-
sifier contains a rule base consisting of a set of fuzzy if-then
rules together with a fuzzy inference mechanism.

Since the relations between the input variables can have
a non linear nature, fuzzy systems were used in this work to
binary classify gain/no-gain of information for each lab test
as follows: by using variable Y as the lab test for which the
information gain is to be assessed, and variables X as inputs
in a fuzzy model, X go through a forward selection of features
[37,31] to obtain the subset of X that better classifies Y. To avoid
magnitude effects in the classification process [38], variable(s)
X were normalized as follows:

Xnorm = (X − Xmin)
(Xmax − Xmin)

(2)

where Xnorm is the normalized version of X, while Xmin and
Xmax represent the minimum and maximum values of X,
respectively. The minimum–maximum normalization method
is commonly used in engineering applications to normalize
the data due to its linear transforming form [38]. Additionally,
Y was normalized by setting the lab tests with information
gain to 1, and those with no gain to 0.

In this work, Takagi–Sugeno (TS) fuzzy models were used
[15], which consist of fuzzy rules where each rule describes
a local input–output relation. We  used TS fuzzy models due
to their general acceptance, simplicity and availability of soft-
ware  tools to perform it. When TS fuzzy systems are used,
each discriminant function consists of rules of the type

RuleRc
i :

If x1 is Ac
i1 and . . . and xM is Ac

iM

Then dc
i
(Xnorm) = f c

i
(Xnorm),

i = 1, . . . , K

(3)

where x1, . . .,  xM are the values of each feature of the vector
Xnorm, and f c

i
is the consequent function for rule Rc

i
. In these

rules, the index c indicates that the rule is associated with
the output class c. Therefore, the output of each discriminant
function dc(Xnorm) can be interpreted as a score (or evidence)
for the associated class c given the input feature vector. The
degree of activation of the ith rule for class c is given by:

ˇi =
M∏

j=1

!Ac
ij
(x), (4)

where !Ac
ij
(x) : R  → [0,  1]. The discriminant output for each

class c, with c = 1, . . .,  C, is computed by aggregating the indi-
vidual rules contribution:

dc(x) =
∑K

i=1ˇif
c
i
(Xnorm)

∑K
i=1ˇi

(5)

The classifier assigns the class label corresponding to the
maximum value of the discriminant functions, i.e.

Y = max
c

dc(Xnorm) (6)

When the fuzzy model classifies Y as 1, the corresponding
lab test is considered to provide an information gain. On the
other hand, if Y is classified as 0, that lab test is considered
to not provide an information gain and thus, it should not be
done in real practice.

A multi-criteria optimization process was used in this
paper in order to simultaneously maximize the sensitivity,
specificity and accuracy of the models [39–41]. Through this
approach, individual weights can be assigned to each criterion
during the creation of the models. In this work, more  weight
was assigned to the sensitivity of the models, since the medi-
cal and economical impact of misclassifying a test that should
be done is higher than just doing a test that can be avoided.
This multi-criteria approach allows the maximization of sen-
sitivity, without neglecting the specificity and accuracy of the
models.

Summarizing, a fuzzy system is the modeling algorithm we
used to determine if a lab test would provide an information
gain or not. In the positive case, the test should be carried out
in clinical practice; in the negative case it should not be done.

In this paper, the fuzzy models were created using the
Fuzzy Toolbox®, a component of the MATLAB® suite, using
Genfis3. The code with the specific details can be requested to
the author by email.

4.  Results

4.1.  Resulting  subset

In this work, we  selected a specific subset of patients pre-
senting hemorrhage in any part of their gastrointestinal tract
(GI bleeds). This selection was done because of the impact
of lab results in the therapeutic decision-making process
among these patients, the frequency of testing that is higher
than for other common underlying medical conditions, and
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Fig. 3 – Membership functions of the most predictive variables for hematocrit.

Fig. 4 – Membership functions of the most predictive variables for hemoglobin.
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Table 4 – Prediction results for the online configuration. AUC: area under the receiving-operator curve – sensitivity: rate of
correctly classified tests with gain of information – specificity: rate of correctly classified tests with no gain of information.

Lab test Accuracy (%) ± S.D. AUC ± S.D. Sensitivity ± S.D. Specificity ± S.D.

Calcium 85.4 ± 2.3 0.85 ± 0.01 0.88 ± 0.03 0.81 ± 0.1
PTT 86.1 ± 1.2 0.86 ± 0.03 0.89 ± 0.01 0.82 ± 0.2
INR 90.7 ± 2.1 0.90 ± 0.01 0.91 ± 0.01 0.89 ± 0.01
Hematocrit 81.7 ± 1.6 0.81 ± 0.05 0.84 ± 0.02 0.78 ± 0.1
Hemoglobin 83.6 ± 3.1 0.82 ± 0.02 0.85 ± 0.03 0.81  ± 0.2
Fibrinogen 84.3 ± 2.8 0.84 ± 0.01 0.87 ± 0.03 0.80 ± 0.4
Lactate 80.3 ± 2.2 0.82 ± 0.01 0.82 ± 0.02 0.77 ± 0.4
Platelets 88.1 ± 1.3 0.87 ± 0.01 0.90 ± 0.01 0.85 ± 0.2

because these patients show significant variations in the lab
results during their ICU stay. Although these variations can be
challenging from the predictive modeling point of view, they
become a good test bench under the assumption that if mod-
els do well in predicting highly variable tests, they would do
even better with tests that remain pretty much constant dur-
ing the whole admission. The resulting subset consisted of 746
GI bleeds.

4.2.  Prediction  results

Prediction results classifying information gain or no informa-
tion gain for the online configuration can be seen in Table 4.
The accuracy of classifications is greater than 80% for all lab
tests. The values of sensitivity and specificity also have high
accuracy.

Results for the morning configuration are detailed in Table 5.
Accuracy is greater than 80% for all labs. Sensitivity and speci-
ficity also have high accuracy.

In Tables 4 and 5 it can be seen that the morning config-
uration results in a generally higher performance range of
classification metrics.

Results for patients actively bleeding, using only data dur-
ing transfusion periods, were comparable to those shown in
Tables 4 and 5, and thus not shown in detail in this work.

4.3.  Reduction  of  unnecessary  lab  testing

The models proposed in this paper predicted which lab tests
provide a gain of information based on the definition of mean-
ingful thresholds for each lab. Those tests predicted as not
providing an information gain are the ones that in clinical
practice could be reduced, i.e. there would no need to draw
blood and run those test. In Table 6 the details of the reduc-
tion results are presented for the morning approach. In the
last row of Table 6 it is possible to see that the average reduc-
tion obtained using this approach reaches a 50% of the total
amount of lab tests.

The last column in the same table shows the percentage of
the tests incorrectly recognized by the model as not providing
an information gain (false negatives). These results mean that,
in average, 11.5% of the tests that would not be done following
this approach, are in fact important and should be done, i.e.

Table 5 – Prediction results for the morning configuration.

Lab test Accuracy (%) ± S.D. AUC ± S.D. Sensitivity ± S.D. Specificity ± S.D.

Calcium 87.4 ± 1.1 0.86 ± 0.02 0.90 ± 0.01 0.81 ± 0.03
PTT 87.1 ± 1.5 0.88 ± 0.01 0.90 ± 0.02 0.85 ± 0.01
INR 92.1 ± 1.8 0.92 ± 0.02 0.93 ± 0.02 0.91 ± 0.01
Hematocrit 83.7 ± 2.7 0.82 ± 0.00 0.84 ± 0.04 0.79 ± 0.03
Hemoglobin 86.6 ± 2.8 0.86 ± 0.01 0.87 ± 0.02 0.84 ± 0.00
Fibrinogen 86.3 ± 3.3 0.84 ± 0.03 0.89 ± 0.01 0.80 ± 0.01
Lactate 82.3 ± 1.1 0.81 ± 0.01 0.83 ± 0.02 0.79 ± 0.03
Platelets 90.1 ± 1.9 0.90 ± 0.00 0.92 ± 0.01 0.88 ± 0.01

Table 6 – Lab test reduction results for the morning configuration.

Lab test Original number of tests Tests providing
information gain

Percentual reduction Percentual false
negatives

Calcium 9745 5724 58.74% 10%
PTT 9491 5425 57.16% 10%
INR 8851 4981 56.28% 7%
Hematocrit 15,625 8745 55.97% 16%
Hemoglobin 10,047 4809 47.87% 13%
Fibrinogen 1515 245 16.17% 11%
Lactate 4977 2550 51.24% 17%
Platelets 10,960 5872 53.58% 8%
Average 8901.37 4793.875 49.62% 11.5%
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Table 7 – Predictive variables (morning configuration) for each lab test and associated fuzzy rules.

Lab test Predictive variables Rules created (Simplified interpretation)

Calcium •  Previous Calcium If  Previous Calcium is low and Heart Rate
is low then Next Calcium test is relevant• Heart Rate

Lactate • Previous Lactate If  Previous Lactate is low and Temperature is high and
Arterial blood pressure is high and Heart Rate is normal/high
then Next Lactate test is relevant

• Temperature
• Arterial blood pressure
• Heart Rate

Fibrinogen • Previous Fibrinogen If  Previous Fibrinogen is low and amount of Fresh frozen
plasma transfusion is high and Urine Output is low then
Next Fibrinogen test is relevant

• Fresh frozen plasma
• Urine Output

Platelets • Previous Platelets If  Previous Platelets is low and amount of Platelets
transfusion is high and Temperature is high then Next
Platelets test is relevant

• Platelets transfusion
• Temperature

PTT • Previous PTT If  Previous PTT is low and amount of Fresh frozen plasma
transfusion is high and amount of Platelets transfusions is
high then Next PTT test is relevant

• Fresh frozen plasma
• Platelets transfusion

INR • Previous PTT If  Previous INR is high and amount of Fresh frozen plasma
transfusion is high and amount of Platelets transfusions is
high and Urine Output is low then Next INR test is relevant

• Fresh frozen plasma
• Platelets transfusion
• Urine Output

Hematocrit • Previous Hematocrit If  Previous Hematocrit is low and amount of PRBC is high and
SpO2 is normal and amount of Fresh frozen plasma
transfusions is high and Arterial blood pressure is normal
and IV Infusion is high then Next Hematocrit test is relevant

• PRBC
• SpO2

• Fresh frozen plasma
• Arterial blood pressure

Hemoglobin • Previous Hemoglobin If  Previous Hemoglobin is low and amount of PRBC is high
and Fresh frozen plasma transfusions is high and Arterial
blood pressure is normal and IV Infusion is high then Next
Hematocrit test is relevant

• PRBC
• Fresh frozen plasma
• Arterial blood pressure

the costly error of the model in terms of health care delivery
and decision-making.

Results for the online approach, not shown in this paper,
demonstrated a similar reduction performance.

4.4.  Specific  results  of  fuzzy  modeling

Fuzzy models were chosen as the modeling tool for this work.
Fuzzy models have the ability to tackle non-linear relations
between variables, and to provide linguistic interpretation of
inputs and outputs. Non-linear data relationships and linguis-
tic interpretation is well suited to clinical scenarios [36] (see
Section 3). The linguistic interpretation especially comes from
the rules that fuzzy models generate in the form of “if-then”
statements, obtained from the combination of membership
functions created for each input and output [16]. The if part is
known as the antecedent, while the then part is known as the
consequent.

Clinical experts reviewed all the rules generated by the
model and considered the rules valid.

Low, normal and high ranges for each input variable,
depicted as blue, green and red backgrounds in Figs. 3 and 4
and in the electronic appendix, where defined according to
generally accepted clinical limits [25].

Variables selected for each predicted lab test and the
rules generated to identify tests with gain of information are
detailed in Table 7.

Several pairs of lab tests have similar antecedents, namely
hematocrit and hemoglobin, and PTT and INR. These pair-
ings have close physiological relationships and the similarities
add first principle clinical validity. This is graphically demon-
strated in Figs. 3 and 4 and Figs. 5 and 6, respectively.

For all lab tests, and for both online and morning approaches,
the greatest contributor to the predictive model was the pre-
vious value of the lab test in question.

5.  Discussion

The classification results obtained were good in terms of the
accuracy, and in recognizing relevant and not relevant tests.
The online and morning modeling was undertaken to simu-
late ICU clinicians’ approaches. Both configurations resulted
in high accuracy, sensitivity and specificity. Sensitivity was
higher than specificity in all cases, suggesting that fuzzy mod-
els found a better set of rules to correctly predict lab tests that
represent a gain of information than those which not. One rea-
son for this could be that a significant amount of non relevant
lab tests have values that are very close to the proposed out-
come thresholds (upper and lower laboratory test ranges), or
the drop in laboratory values (outcome variable d in the model
formula) is slightly smaller than the cutoff we  determined.

The morning configuration gave better results in terms of
general accuracy, specificity and sensitivity, suggesting that
lab values during a given day have a stronger relationship than
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Fig. 5 – Membership functions of the most predictive variables for PTT.

values from a previous day (online configuration). This may
simply reflect a temporality relationship whereby the closest
lab test in time is the best predictor of the next lab test, and
the morning configuration best suits lab test closeness. It is also
possible that other morning-related activities could make this
the better predictor. For example, many  clinical interventions
and activities not captured by this dataset are deliberately
scheduled for business hours when more  resources in staff
and materials are present. Trial of extubation is one example
and this may  have some influence on morning blood tests.
Furthermore, it is well recognized that humans have cyclical
physiological patterns across a range of measurable parame-
ters, e.g. early morning cortisol, and it is possible that these
also could influence a morning blood draw as compared to a
night blood draw from the previous day.

Table 6 shows the results in terms of the test reduction that
can be obtained applying the proposed models in GI bleeds at
the ICU. We  are able to demonstrate a 50% reduction in testing,
which improves the 37% previously published by [1–3]. How-
ever, we note a specific risk related to false negatives, shown in

the last column of Table 6. In this table we see 11.5% of the tests
predicted as not providing an information gain should actually
be ordered and would assist decision-making. However, even
given this, these results are still better than those obtained by a
human with average training in the subject. As a rule of thumb,
it is generally accepted that clinicians can correctly classify
medical situations with 0.8–0.85 sensitivity, and the models
proposed in this paper have an 0.89 average sensitivity for the
tests used as outcomes. Although these results are promising,
more  testing and comparison to human decision-making is
required before applying this models in clinical practice.

In Table 7, Figs. 3–6 and in the electronic appendix we  can
see that all of the hematological blood tests (hemoglobin,
hematocrit, PTT, INR and platelets) have transfusions as
significant predictors, and indeed in our modeling, the
major predictor. This is not unexpected when one considers
the direct relationship between transfusion and subse-
quent hematological assessment. This does however raise
interesting prospects around the application of these find-
ings in resource-constrained environments. More  specifically,
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Fig. 6 – Membership functions of the most predictive variables for INR.

the assessment of transfusion volume replacement can be
assessed with “lo-tech” methods as simple as before and
after observation and recording, whereas oxygen saturation
involves slightly more  “hi-tech” resources from bedside moni-
tors. Further work could explore the predictive value of
transfusions alone as a simply acquired input variable.

The authors of this paper have previously published a
method for test reduction, using neural networks and fuzzy
models to determine which hematocrit tests should be done
[42]. However, that piece of work did not consider the online and
morning approaches proposed here. Moreover, in this work all
the labs relevant for GI bleeds were considered, using a mis-
classification balance method (see Section 3.8). Finally, neural
networks were not used in this work because of their black-box
nature, and because of showing statistically significant lower
performance than fuzzy models.

6.  Limitations

We  focused solely on data from GI bleeds and so the general-
izability of these models cannot be extended to other clinical
conditions.

We  used a time series format to feed the models and to
obtain the predictions, in which each test is not considered
individually, but related to previous values. Analysis of indi-
vidual and/or first tests cannot be carried out with the method
proposed in this paper.

We  did not undertake comorbidity analysis. Modeling of
smaller subsets of patients sharing comorbidities concomi-
tant to GI bleeding, indicating higher similarity, could improve
the classification accuracy.

The use of medications that potentially influence coagula-
tion properties of blood were not considered. One limitation of
seeking to address this principle would be the desire to then
consider all medicines that might potentially influence all of

the input variables, individually and collectively, and this list
could be large and somewhat unmanageable.

Finally, as is consistent with standard modeling practice,
the variables selected as inputs were limited by patients with
enough measurements. Other variables may  be used, con-
tributing to improve accuracy.

7.  Conclusion

Reducing frequent lab testing and the potential clinical and
financial implications are an important issue in intensive care.
In this work we  present an artificial intelligence method to pre-
dict the benefit of proposed future laboratory tests. Using ICU
data from 746 patients with gastrointestinal bleeding, and 11
easily acquired physiological measurements, we  demonstrate
high accuracy in predicting the likely information to be gained
from proposed future lab testing for 8 common GI related lab
tests.

The approaches proposed in this work reached a reduction
of unnecessary lab tests of 50%, which considerably improves
the previously published 37% obtained with other methods.

Future work will explore applications of this approach to a
range of underlying medical conditions and laboratory tests.
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Fig. A.1 – Membership functions of the most predictive
variables for fibrinogen.
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Summary points

• Frequent laboratory testing does not necessarily relate
to better outcomes.

• Reducing frequent lab testing has important clinical
and financial implications.

•  Artificial intelligence has proven successful in mod-
eling medical outcomes with non-linear relations
between inputs and outputs.

• Predictive modeling through fuzzy systems was
applied to a real world ICU database extract comprising
746 patients with gastrointestinal bleeding.

• Eight different lab components were predicted using
eleven minimally invasive measurements.

• Classification accuracy of greater than 80%.
• Approximately half of the total amount of tests in

those 746 patients could be reduced according to the
criteria used in this work.
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Appendix  A.  Membership  functions  for  the
reduction  of  lab  tests

See Figs. A.1–A.4.
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