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signals, is described. Using energy thresholding and Gaussian kernels, in conjunction with
a nonlinear gradient descent optimization, it is shown that significant noise reduction,
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modelling and robust ECG QT-analysis are described.

Keywords: ECG; Gradient Descent; Model-based Filtering; Nonlinear Least Squares Op-
timization; QT-analysis; Segmentation; Source Separation.

1. Introduction

In general, techniques for filtering and segmenting features of interest in a time

series use either ad-hoc derived basis functions (such as in wavelets1, principal

component2 or independent component analysis3,4) or a very general model of a

feature’s frequency content (such as in linear or Wiener filtering5). The lack of an

explicit signal-specific or individual-specific model of the features of interest can

severely reduce the ability of an algorithm to isolate the required signal sources

from contaminants or to identify onsets and offsets of the features.

The method presented in this paper provides a general framework for deriving

models of quasi-stationary signals for robust filtering, compression and segmenta-

tion of a signal and for the location of regions of change. As such, the method

presented here can be viewed as a type of adaptive filter or as a method for corre-

lated source separation6 in the time domain. In particular, the approach described

in this paper is suited to biomedical signals, that are often characterised by oscil-

lations at specific frequencies and contaminated by in-band noise (which is both

periodic and statistical)7. Identifying the underlying signal is therefore extremely

difficult.

Biomedical adaptive filters traditionally use either a generalized knowledge of

the spectrum of a signal source 5, an ad-hoc reference signal8 derived from the

1



May 17, 2006 9:53 WSPC/INSTRUCTION FILE NLLSgaus

2 Gari D. Clifford

observable signal features or statistically derived basis functions that are either non-

individual specific2 or their interpretation is unknown3,4 (since it is a function of

the ever-changing data). The approach described in this article differs from previous

approaches in three important ways. Firstly, a signal- or subject-specific model of

the features to be extracted is created (through an averaging process). Secondly,

the model is then adaptively fitted to each of the features in a sequential manner

(on-line) using a nonlinear least squares optimization procedure. The output of the

model fitting procedure is the extracted source, segmented in time. Thirdly, the

use of Gaussians to describe each turning point in the model, allows a statistically

meaningful derivation of onset and offset points for subtle smoothly varying changes

for high levels of noise (in the original signal).

In this paper, this general framework for filtering and change point localization is

described. After presenting the general signal model, an application to QT-interval

analysis of the electrocardiogram (ECG) is explored. Finally, applications to signal

filtering and modelling in general are discussed.

2. Method

The assumption in the following method is that the time series under analysis is

composed of a set of distinct, yet transient (although not necessarily independent)

morphologies. Examples of these include the set of features used to classify sleep

from the electroencephalogram, (such as K complexes and sleep spindles9), the heart

sounds recorded in the phonocardiogram, or the waves in a pulsatile blood pressure

waveform7. Once a set of general features are identified, a template of each feature

can be formed and a mixture of temporally shifted basis functions (such as Gaus-

sians) can be fitted to each major turning point in the signal using an optimization

procedure.

The signal model is a modification of a previously described dynamic model10,

where each turning point in a signal is represented by a Gaussian of varying width

and amplitude, centered at different points in time. This novel implementation ex-

tends the model by adding a new Gaussian for each asymmetric turning point,

then adaptively modifying the parameters to fit a distinct observation. Previously,

the original model has been adapted to produce realistic arrhythmias11, abnormal

features12, blood pressure signals13 and respiration13. Here, the concept is general-

ized to model any signal and provide an automatic method for deriving the model

parameters.

2.1. A General Gaussian Signal Model

If we assume a transient feature (such as a K complex) is smoothly varying and

composed of M symmetric and N asymmetric turning points, then M + 2N Gaus-

sians are required to described the feature (since a Gaussian is symmetric). I.e., an

asymmetric turning point requires two Gaussians to be accurately represented. The
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segment of the signal z, which describes the feature under analysis is given by

z =

M+2N
∑

i=1

κ exp(∆t2i /2b
2
i ) + zit (2.1)

where ∆ti = (t− ti), is the relative position of each turning point from the location

in time t, of a reference point (fiducial marker), κ = ai/2bi is a normalization

constant (chosen for consistency with the original dynamic model10), and the zi are

baseline offset parameters for each of the turning points. The coefficients ai govern

the magnitude of the turning points and the bi define the width (time duration) of

each turning point. The model is therefore fully described by 3(M+2N) parameters.

2.2. Fitting the model to features

In order to fit Eq. 2.1 to a feature, an approximate template must be constructed.

A general method for this is to apply a coarse matched filter (such as cross corre-

lation with a population-independent general template) or an energy thresholding

technique (which is common in ECG analysis) to the signal in question. The selec-

tion of one technique for this process over another depends on the distribution of

the energy of the observation over time. If the signal energy is evenly distributed

over time, some a priori knowledge of the features must be used to form a simple

template for a matched filter.

Fiducial markers can then be located at various points in time that provide

time-specific reference markers for each candidate feature (segment of signal). By

segmenting the time series around each fiducial point, and performing a temporal

average, a first template class is generated. By comparing each candidate feature

to the first template class, possible artifacts or patterns belonging to other feature

classes can be rejected (using a suitable threshold such as a cross-correlation below

0.9; see Clifford et al 14). The first feature class can then be modified to be the

average of the non-rejected individual features (to construct a more specific feature).

The rejected candidate can then be averaged to form a second feature class template

and the process repeated until the number of possible remaining candidates (which

were not included in the previous classes) are below some pre-defined threshold, or

the inter-pattern variance between the remaining candidate patterns becomes too

high to allow the formation of any more distinct groups.

In the case of an ECG, the first feature class is likely to be a sinus beat (as

long as it is the dominant morphology in the time series14). Abnormal beats will

be rejected and the dominant abnormal beat will become the second feature class.

High correlations between the average of this rejected set and each member of the

set will identify the new members of the set. Rejected beats will cascade down to

the next candidate class.

For each template class, an initial model must then be derived. The model order

O = M+2N , the number of symmetric plus twice the number of asymmetric turning

points in the class. Often, this is a known quantity for most biomedical features,
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but in some circumstances, an unsupervised method for determining the model

order is required. One possible method is as follows: if there are enough feature

candidates to form a smooth, low noise template, the number of turning points

can be calculated by numerically differentiating the feature and locating the zero

crossing points (after allowing for delays in the numerical differentiation function).

The degree of asymmetry for each turning point can then be found by squaring the

resultant differential and comparing the resultant two peaks (one for the upslope

and one for the downslope). If a given pair of peaks are similar in height and width,

then the peak is symmetric and only one set of ai, bi, and ti are required for the

peak. If the peaks in the squared differential, for a given pair, differ sufficiently (by

some predefined threshold that depends on the feature class and signal amplitudes)

then the peak is deemed asymmetric and two Gaussians are required to describe

the turning point.

It should be noted that this procedure effectively determines the approximate

starting points for fitting the model to each feature candidate. However, the height

(ai) and width (bi) of each Gaussian in the initial model remain to be determined.

For most applications, (as long as the ti are initially limited so that they do not

vary significantly) the initialization of the ai and bi do not affect the final outcome,

and random small values are sufficient. However, in some situations abnormal local

minima in the model fitting procedure are possible and the use of an estimate of

the width and height of the turning points not only helps to avoid this, but also

allows a significant acceleration in the time for fitting each feature candidate.

The residual error between the result of the model fitting procedure (described

below) and the original feature provides a facility to reject particular fits. Fig. 1

illustrates the logic flow in this problem. It should also be noted that a classification

can be performed by initialising with each possible class (variant of the model)

and picking the class with the minimum residual error, or the smallest distance

(in parameter space) between a given fit and a cluster center of representative

candidates in the same parameter space.

2.3. Nonlinear least squares gradient descent

An efficient method of fitting the signal model (Eq. 2.1) to a candidate vector s(t),

is to minimize the squared error between s and the model output, z. In other words,

we wish to find error

εr = min
ai,bi,θi

‖s(t) − z(t)‖2
2 (2.2)

over all of the 3(M + 2N) parameters in the model. Eq. (2.2) can be solved using

an (3M + 6N)-dimensional nonlinear gradient descent on the parameter space15.

In general, the problem of multidimensional nonlinear least-squares fitting requires

the minimization of the squared residuals of n functions, fj , in p parameters, xj ,
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Fig. 1. Generalized procedure for constructing a model for each class and fitting each possible
model to each feature candidate.

Φ(x) = (1/2)

n
∑

j=1

fj(x1, ..., xp)
2 (2.3)

= (1/2)||F (x)||2 (2.4)

All algorithms for achieving this minimization must proceed from an initial guess

using the linearization,

ψ(p) = ‖F (x+ p)‖ ≈ ‖F (x) + Jp‖ (2.5)
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where x is the initial point, p is the next step and J is the Jacobian matrix

Jjk = dfj/dxk. Additional strategies are used to enlarge the region of convergence

and include requiring a decrease in the norm ‖F‖ on each step or using a trust

region to avoid steps which fall outside the linear régime. This procedure has been

implemented in two different libraries; the Gnu Scientific Libraries (GSL) in C, and

in Matlab using the function lsqnonlin.
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Fig. 2. Typical features in the ECG.

3. Application to the ECG

In this section an example of the above described procedure is applied to the ECG

to derive a robust segmentation and derivation of the typical clinical features found

in the ECG. The ECG is usually described in terms of its major turning points

(labelled P, Q, R, S and T - see Fig. 2). The timing between the onset and offset of

particular features of the ECG (referred to as an interval) provides a measure of the

state of the heart and can indicate the likelihood of various cardiological conditions.

Perhaps the two most important intervals in the ECG waveform are the PR interval

and the QT interval (see Fig. 2). The PR interval is defined as the time from the

start of the P wave to the start of the QRS complex, and corresponds to the time

from the onset of atrial depolarization to the onset of ventricular depolarization.

The QT interval is defined as the time from the start of the QRS complex (ventric-

ular depolarization) to the end of the T wave (ventricular repolarization). Since the

QT interval corresponds to the total duration of electrical activity (both depolariza-

tion and repolarization) in the ventricles, changes in the QT interval are currently

the gold standard for evaluating the effects of drugs on ventricular repolarization.

Accurate measurement and assessment of the QT interval is therefore extremely
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important for the assessment and validation of new drugs in clinical trials. Unfor-

tunately, a precise mathematical definition of the end of the T wave does not exist

and therefore T wave end measurements are inherently noisy or subjective and QT

interval measurements often suffer from relatively high inter- and intra-expert (or

algorithm) variability. In particular, the smooth, almost asymptotic, transitions of

the end of the T wave into the noisy baseline make locating a single stable end

point extremely difficult, if not impossible.

The method presented in this paper resolves these issues by characterizing the

changes of the waveforms in terms of Gaussians, which have a mathematical (prob-

abilistic) definition for their initial and terminal points. Furthermore, the use of

a model with no explicit noise variable, results in a waveform that is smooth and

noise-free, and therefore amenable to noise-sensitive processes such as differentia-

tion.

3.1. The ECG model

The ECG typically contains 5 turning points (P, Q, R, S and T), which are all

approximately symmetric except for the T wave (at low to medium heart rates).

Therefore, 18 parameters (6 Gaussians) are required to accurately describe the ECG

with Eq. 2.1, which can be rewritten as:

z =
∑

i∈{P,Q,R,S,T−,T+}

(ai/2bi) e
∆t

2
i

2b2
i + zit (3.1)

where T− and T+ are the two Gaussians used to describe the asymmetric T wave.

(This variant of the model was first proposed by the author in16.) The application

to the localization of the PR and QT intervals is a simple extension of this method.

For any given ECG lead, a QRS detector17 is used to locate the fiducial points

(e.g. R-peaks) of each beat. Each beat is then segmented so that no trailing T wave

enters in the front of a window or any following beat’s P wave enters into the latter

part of the segmenting window. In practice this involves calculating the minimum

RR interval (highest instantaneous heart rate) and using the Bazzet or Fridericia

correction factor18 (QTc = αQT where α = RR−1/2 or RR−1/3 respectively) to

calculate the longest possible window from the R-peak. Extreme QTc elongation

can vary between QTmax = 0.44s to QTmax = 0.9s19, and therefore a window of

QTcmax/RR
1/3

min (of up to 0.9s) extending from the Q-onset is appropriate. The front

end of the window can be calculated in a similar manner, with the PR interval being

modulated by the local RR interval20 so that PRmax/RR
−1/3

min extending from the

start of the window to the Q point is appropriate (with a maximum time of about

200ms from the P-onset to the R-peak). The window in which a fit is performed is

therefore asymmetric around the R-peak. The application of the fitting procedure

to a typical ECG can be seen in Fig. 3, which illustrates the initial conditions in the

upper left frame, four intermediate steps, and the final fit in the lower right frame.
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Initial conditions Step 85

Step 115 Step 201

Step 258 Step 465 (final step)

Fig. 3. Six different steps in the fitting procedure. The target waveform (the dark blue line) does
not vary from step to step whereas the Gaussians being fitted vary in location, amplitude and
width from step to step.
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Fig. 4. Original ECG, nonlinear model fit, and residual error.

To minimize the search space for fitting the parameters (ai, bi, and ti), a simple

peak-detection and time-aligned averaging technique is performed to form a low-

noise template from the average beat morphology using approximately the first 60

beats centered on their R-peaks. The exact number of beats in the template is a

trade-off between adapting to the heart rate-induced nonstationarities yet including

sufficient beats to average out noise and morphological differences. Furthermore,

the template window length is unimportant, as long as it contains all the PQRST

features and does not extend into the next beat). This method, including outlier

rejection is detailed in Clifford et al 14.

T− and T+ are initialized ±40ms either side of θT . By measuring the heights of

each peak (or trough) an estimate of the ai can also be made. Each bi is initialized

with a value 10 + 5µ, where µ is a uniform distribution on the interval [0,...,1].

Each of the ai and θi, were initialized with random perturbations of µ and 20µ

respectively. Fig. 4 illustrates an example of a template ECG, the result of the

model-fit, and the residual error, εr.

3.2. QT analysis; waveform boundary localization

For QT analysis, it is necessary to locate the onset of the Q wave and the offset of the

T wave. In the presence of noise, this is an extremely difficult problem. However,

using the model-fitting approach, the resultant ECG is noise-free and therefore

thresholding on the differential of the signal is sufficient to localize the QT-interval.

Ideally one would choose the points where dz/dt = 0 (just before θQ and just after

θT+, parameters we know precisely from the model). In practice, finite sampling

rates mean that we must choose a sampling rate-dependent threshold ε. (10−4 is

sufficient for a normalized ECG sampled at 256Hz.) Fig. 5 illustrates this process;
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QRS onset and T wave end points are marked with a cross and vertical line. The

differential, dz/dt, is shown as a dotted line. Fig. 6 illustrates the same process for

a series of 256 beats, with a histogram of all the resultant QT interval distributions.

In fact, clinicians rarely choose the lowest gradient point after the T wave as

the offset since inherent noise in the ECG makes this impossible. The T wave end

is usually placed by experts about 40 to 60ms earlier than the minimal gradient.

This clinical offset, which can be adjusted for, is a function aT−, bT−, aT+, aT+,

θT+ − θT−, sampling frequency and amplitude resolution (since all these features

affect the gradient of the T wave downslope that clinicians use to extrapolate the

T wave end-point).
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Fig. 5. ECG with QRS onset and T wave end point marked (+). The differential of the ECG
(dz/dt) is also shown. Waveform boundaries are located where dz/dt < ε.

3.3. Translation of parameters back into the dynamic model

Once the parameters of the model have been fitted to an observation, the dynamic

equations of motion for a synthetic ECG10 can be used to generate a realistic

representation of a particular individual’s ECG. The equations are given by a set

of three ordinary differential equations

ẋ = ρx− ωy,

ẏ = ρy + ωx,

ż = −
∑

i∈{P,Q,R,S,T}

ai∆θi exp(−∆θ2i /2b
2
i ) − (z − z0), (3.2)

where ρ = 1−
√

x2 + y2, ∆θi = (θ−θi) mod 2π, θ = atan2(y, x) and ω is the angular

velocity of the trajectory as it moves around a limit cycle. Baseline wander can be
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Table 1. Morphological parameters of the ECG model with heart-rate dilation factor α =
p

hmean/60.

Index (i) P Q R S T− T+

θi -α
1
2 70o -α15o 0o α15o α

1
2 83o α

1
2 90o

ai 0.8 -5.0 30.0 -7.5 α3/2/2 3α3/2/2

bi 0.2α 0.1α 0.1α 0.1α 0.4α−1 0.2α

introduced by coupling the baseline value z0 in (3.2) to the respiratory frequency

f2 using

z0(t) = A sin(2πf2t), (3.3)

where A = 0.15 mV.

These equations of motion given by (3.2) can be integrated numerically using

a fourth order Runge-Kutta method21 with a time step ∆t = 1/fint where fint

is the internal sampling frequency and must be an integer multiple of the output

frequency fs. The value of fs or fint can often be important and a resampling step

is sometimes required. For the ECG, fs or fint should be at least 500Hz12. Fig. 7

illustrates the result of this process using the parameters detailed in table 1. Note

that the heart rate compression factor α is used on all the parameters (except aP

through aS). Note in particular that the T wave is adjusted to increase asymmetry

and amplitude as the heart rate rises.
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It should be noted of course, that the model is not confined to the representa-

tion and reproduction of ECG signals, and can be used for any signal that can be

reasonably fitted to a sum of Gaussians (or any other specified set functions). Fig.

8a illustrates an example of a blood pressure waveform, and 8b illustrates a more

general pulse train, (a series of asymmetric damped sinc-like functions).

4. Conclusions

The application of a nonlinear gradient descent optimization of a generic signal

model to biomedical signals has been shown to provide a framework for providing

a noise-free representation of a signal’s important components, resulting in an in-

band filtering process. The choice of Gaussian kernels allows the identification of

statistically meaningful changes in the behaviour of a signal. By simply locating

the tails of a Gaussian wave-packet, the onset and offset of distinct features is

possible. In particular, the application is demonstrated for the stable location of

the QT-interval in the ECG under noisy conditions.

The important difference in this approach in comparison to previous approaches

is that the adaptive filter uses an accurate signal- or subject-specific model of the

underlying morphology, leading to a virtually distortion-free filter. In fact, the use

of the model-fitting procedure can be viewed as a robust filter that rejects in-band

noise, yet does not suffer from many of the problems encountered in other filtering

procedures (such as ringing).

Since the technique in this paper provides an accurate method for signal rep-

resentation and noise extraction, it therefore provides an accurate method for

analysing the data in the signal which is conventionally considered noise. In par-

ticular, the removal of the P, QRS and T waves from an ECG provide an excellent

method for measuring high frequency QRS data (such as late potentials). Further-

more, the number of iterations required to fit the model and the error in the final

fit, provide an alternative quantification of the noise level in the signal.

Two other applications of this technique are also immediately apparent. Firstly,

the representation of the signal in terms of only 18 parameters provides a novel

method of compression. Secondly, the distance of the 18 parameters (or a subset

of them) from a population cluster for each possible feature, provides a means of

classification.

Of course, the use of Gaussian kernels is not a unique choice, and any mixture

of mathematical functions can be used to fit a sum of functions to the observation.

In fact, other choices of function for certain parts of a feature may yield a better

fit (i.e. one that is more robust to noise, with a lower residual error, faster con-

vergence times in fewer operations, using fewer model parameters). Comparisons

with Gaussian wavelets are obvious, but distinct differences do exist. For example,

the Gaussian wavelet is actually the derivative of a Gaussian and hence the prob-

abilistic interpretation is less clear. Furthermore, rather than linearly convolving

the function with the entire time series over many scales, a restricted nonlinear fit
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is performed at specific locations. It should also be noted that the basis functions

necessary for the approach presented in this paper have only one restriction; they

must be everywhere continuous (and hence require infinite tails) to avoid discon-

tinuities in the resultant fit. However, the description of the features in terms of

Gaussian curves, which have exact (probabilistic) interpretations for starting and

end points, allows for a smooth and accurate noise-free representation of a signal

with precise boundaries (such as the QT-interval on the ECG). This represents a

significant improvement on existing methods for localizing such boundaries, which

are generally disturbed by the inherent noise or artefacts in the observation due to

filtering processes or exogenous influences.
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