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Abstract

Computational models of cardiovascular function de-

pend on the specification of parameters, whose values can

depend quite strongly on particular subject characteristics

(e.g., age, height, weight, disease state). In this study, we

present a scaling scheme, based on the principle of elas-

tic similarity, that allows for referencing of cardiovascu-

lar parameters to different anthropometric profiles. Com-

bined with a sampling procedure, this scaling scheme al-

lows for simulations of subjects of different body size. Sim-

ulated steady-state mean values, standard deviations, and

ranges of important hemodynamic variables match their

experimental analogs of the normal healthy adult popula-

tion quite well. We conclude that scaling of cardiovascu-

lar parameters on the basis of elastic similarity provides a

valid basis for incorporating the effects of size in popula-

tion simulations.

1. Introduction

Lumped-parameter models of physiological systems

have been used extensively in the past to quantify and to

test our understanding of physiological systems, both in

the realm of research and in teaching environments. Such

models depend on parameters whose values can depend

quite strongly on particular subject characteristics, such as

age, height, weight, or disease state. Frequently, one is

interested in modeling the behavior of a population of sub-

jects and thus the parameter values need to be referenced

to the mean characteristics of the subject population one is

interested in representing. Identifying such a nominal (or

referenced) parameter profile can be quite challenging and

usually involves significant review of the pertinent med-

ical and physiological literature. Once such a set of pa-

rameters has been identified, however, the model can be

executed to generate a simulation that in some sense rep-

resents the average response of the subject population. In

order to simulate the response of a population with differ-

ent mean characteristics, a different set of parameters need

to be specified.

In cardiovascular physiology, for example, blood vol-

ume is known to exhibit a strong dependence on body

Figure 1. Correlation of total blood volume and body

weight. Data adapted from [1].

weight, as displayed in Figure 1. Cardiovascular param-

eters therefore need to be selected with particular anthro-

pometric measures in mind.

The purpose of this study is to combine a set of nomi-

nal parameter values and their standard errors with general

allometric scaling laws to allow for sampling of parameter

profiles of subjects with different anthropometric and car-

diovascular characteristics. This sampling will enable us

to repeat simulations for different subject characteristics

and therefore simulate individual members of a population

rather than a single subject whose characteristics are cho-

sen to be representative of the mean of the population.

We examine two commonly used allometric scaling

laws, based on the principles of geometric and elastic sim-

ilarity, respectively, as the basis for scaling of cardiovascu-

lar parameters. After establishing the details of the sam-

pling scheme, we simulate steady-state values of cardio-

vascular variables and compare the model’s predictions to

hemodynamic data from healthy subjects.

2. Scaling laws

Scaling of physiological parameters is commonly de-

scribed by allometric scaling laws, which take the form of

power-law monomials

Yi = ai · W
ki
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where Yi is a physiological variable of interest, and W is

the weight of a member of the population under consider-

ation.

Theoretical frameworks have been developed to predict

the scaling exponents for different physiological parame-

ters, given a set of fundamental assumptions [2, 3]. Geo-

metric similarity is based on the assumption that a set of

individuals have the same general shape but differ in size.

Mathematically, geometric similarity is based on propor-

tional scaling of all variables of linear dimension. In par-

ticular, L ∝ D, where L is the dimension of a character-

istic length variable (such as the length of the femur), and

D is the associated transverse dimension (such as the di-

ameter of the femur neck)1. Elastic similarity, on the other

hand, asserts that larger individuals are more strongly built

than smaller ones [4]. In particular, it states that two vari-

ables are scaled in proportion to their characteristic elastic

properties. Mathematically, elastic similarity is described

by an affine transformation that scales the transverse di-

mensions relatively more than the longitudinal dimensions

(L ∝ D
2

3 ).

If one assumes constant tissue density, weight scales ac-

cording to volume, W ∝ L · D2, so L ∝ W
1

3 assum-

ing geometric similarity and L ∝ W
1

4 when the model

of elastic similarity is employed. Alternatively, D ∝ W
1

3

and D ∝ W
3

8 under the geometric and elastic model, re-

spectively. By computing the exponents ki for various an-

thropometric and cardiovascular variables, we can decide

which of the two models is more appropriate in describing

the scaling behavior of the human body. Table 1 summa-

rizes the results of such regression analyses as applied to

data taken from the literature [1, 5, 6]. The results suggest

that the data favor elastic over geometric similarity.

In healthy non-obese individuals, blood pressure does

not scale with body size, that is P ∝ W0. Combining this

information with the fact that blood volume scales propor-

tional to body size, we can determine that vascular com-

pliance scales according to C ∝ W. We need to under-

stand how blood flow scales in order to understand the

scaling behavior of flow resistance. McMahon [4] argues

and presents experimental confirmation that dynamic vari-

ables of metabolic importance such as blood flow, minute

respiration, and metabolic oxygen consumption all scale

according to W
3

4 under the elastic similarity assumption.

Resistance therefore scales as R ∝ W− 3

4 and physiologi-

cal time scales according to T ∝ W
1

4 .

3. Sampling scheme

Having established the scaling behavior of cardiovas-

cular parameters, we can employ the following sampling

scheme to sample parameter profiles corresponding to dif-

1The sign ∝ signifies proportionality.

Table 1. Allometric exponents of the human cardiovascu-

lar system.

Exponent k

Predicted Observed†

Geometric Elastic
Variable

similarity similarity

Body height 0.333 0.250 (0.223 ± 0.003)

0.333 0.250 (0.221 ± 0.026)

Leg height 0.333 0.250 (0.228 ± 0.004)

Calf girth 0.333 0.375 (0.347 ± 0.004)

Thigh girth 0.333 0.375 (0.350 ± 0.005)

Body surface area 0.667 0.625 (0.602 ± 0.019)

Cardiac output 0.667 0.75 0.71

Blood volume 1.0 1.0 (0.936 ± 0.074)
†Mean ± standard error.

ferent anthropometric and cardiovascular characteristics.

We assume that a nominal parameter profile has been es-

tablished for a reference weight W0.
1. Sample from an empirical distribution function of body

weights to obtain a new weight W1.

2. Sample a new parameter value θi
1 from some appropri-

ately chosen probability distribution function Fi:

θi

1 ∼ Fi(θ
i

0, ∆θi

0).

Here θi
0 and ∆θi

0 represent the i-th nominal parameter

value and standard error, respectively.

3. Scale the new parameter value by the appropriate power

law to obtain the new nominal value θ̂i
1:

θ̂i

1 = θi

1 ·

(

W1

W0

)ki

We chose the normal distribution for the sampling step

(Step 2), but constrained the samples to lie between pre-

defined minima and maxima to account for the fact that

under normal conditions, most cardiovascular variables do

not assume extremely large or negative values.

4. Results

In Table 2, we summarize the steady-state mean values,

standard deviations, and ranges of certain hemodynamic

variables in the normal healthy adult population [7, 8, 9]

and the results of our sampling-based population simula-

tions using a lumped-parameter model of the cardiovas-

cular system [10]. The simulations are based on 500 re-

alizations of the sampling scheme outlined in the previ-

ous section. The data demonstrate that in addition to the

mean values, the degrees of variability and the ranges of

the population-based simulations generally match their ex-

perimental analogs quite well. Two exceptions are the sys-

tolic and the diastolic radial artery pressure, which will be

discussed in the following section.
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Table 2. Comparison of population simulations to steady-state hemodynamic variables of recumbent adults.

Simulations Measurements
Variable

Mean† Range‡ Mean† Range

Pressures, mm Hg

Radial artery∗

Systolic (107 ± 7.5) (97–120) (135 ± 15.7) (106–164)

Mean (94 ± 5.1) (86–103) (91 ± 8.7) (75–110)

Diastolic (79 ± 3.4) (74–85) (71 ± 7.4) (64–86)

Peripheral vein

Mean (10 ± 2.8) (6–15) (8 ± 2.5) (4–13)

Right atrium

Mean (2 ± 1.7) (0–5) (0 ± 1.6) (-2–2)

Right ventricle

Systolic (24 ± 5.9) (15–35) (25 ± 3.4) (18–30)

End-diastolic (1 ± 2.0) (-1–4) (2.6 ± 1.4) (-0.5–4.5)

Pulmonary artery

Systolic (23 ± 6.0) (13–34) (22 ± 3.7) (13–30)

Mean (17 ± 4.4) (10–24) (17 ± 3.1) (10–21)

Diastolic (11 ± 3.5) (8–17) (12 ± 2.6) (3–15)

Pulmonary capillary wedge⋆

Maximum (13 ± 3.4) (8–20) (15 ± 2.9) (8–23)

Mean (10 ± 2.8) (7–16) (12 ± 2.0) (8–15)

Minimum (9 ± 2.6) (5–13) (9 ± 2.2) (5–14)

Left atrium

Mean (5 ± 2.5) (2–8) (7.9 ± 3.0) (2–12)

Left ventricle

Systolic (108 ± 7.7) (98-122) (118 ± 16) (90–140 )

End-diastolic (8 ± 2.8) (5-13) (8.7 ± 2.3) (5–12)

Left ventricular end-diastolic

volume index, ml/m2 (72 ± 14.7) (52–96) (70±20) (54–120)

Left ventricular end-systolic

volume index, ml/m2 (34 ± 9.8) (18–50) (24±10) (14–45)

Cardiac index, l/min/m2 (2.7 ± 0.4) (2.3–3.4) (3.5 ± 0.7) (2.5–5.3)

Stroke index, ml/beat/m2 (38 ± 8.4) (27–51) (46 ± 8.1) (37–72)

Heart rate, beats/min (74 ± 7.8) (61–87) (79 ± 13.8) (59–113)

Systemic resistance, PRU (1.13 ± 0.19) (0.84–1.48) (0.85 ± 0.17) (0.56–1.18)

†Mean ± population standard deviation. ‡(0.05–0.95) inter-quantile range.
∗Compared to aortic root pressure. ⋆Compared to pulmonary venous pressure.
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Figure 2. Normalized cardiac output as a function of body

weight.

In Figure 2, we report normalized cardiac output similar

to the data reported by de Simone and co-workers [6], who

studied normalized cardiac output as a function of body

weight in children and adult subjects. The distribution of

simulated normalized cardiac output compares quite favor-

ably to the part of the experimental observations in adult

subjects.

5. Discussion and conclusions

Numerical values of most cardiovascular parameters de-

pend quite strongly on the average size (weight or height)

of the population one is interested in representing. In this

study, we presented a sampling scheme, based on the prin-

ciple of elastic similarity, that allowed for sampling of

parameter profiles referenced to different anthropometric

measures.

The observed discrepancies between systolic and dias-

tolic radial artery pressure measurements and their simu-

lated equivalents are a limitation of the lumped-parameter

model rather than a limitation of the sampling scheme. The

model is incapable of reproducing phenomena that arise as

a result of the distributed nature of the cardiovascular sys-

tem. The arterial pressure in our model represents aortic

root pressure, yet it is well known that peak-systolic pres-

sure increases and diastolic pressure decreases the further

distal from the heart the pressure is being measured [11].

Yet despite these minor discrepancies, the resultant pop-

ulation simulations represent steady-state hemodynamic

variables quite well. More detailed statistical testing can be

performed when more hemodynamic data becomes avail-

able for the normal general population.

Acknowledgments

This work was partially supported by the National Aero-

nautics and Space Administration through the NASA Co-

operative Agreement NC 9-58 with the National Space

Biomedical Research Institute and by Grant Number RO1

EB001659 from the National Institute of Biomedical Imag-

ing and Bioengineering (NIBIB). Its contents are solely the

responsibility of the authors and do not necessarily repre-

sent the official views of the NIBIB or the National Insti-

tutes of Health.

References

[1] Gibson 2nd J, Evans Jr. W. Clinical studies of the blood

volume. II The relation of plasma and total blood volume

to venous pressure, blood velocity rate, physical measure-

ments, age and sex in ninety normal humans. Journal of

Clinical Investigation 1937;16:317–328.

[2] Kleiber M. Body size and metabolism. Hilgardia 1932;

6:315–353.

[3] McMahon T. Size and shape in biology. Science 1973;

179(79):1201–1204.

[4] McMahon T. Scaling physiological time. Lectures in Math-

ematics in the Life Sciences 1980;13:131–163.

[5] Human Systems Information Center. 1988 Anthropo-

metric Survey of the U.S. Army Male/Female Work-

ing Data Set. Technical report, U.S. Department

of Defense, Wright-Patterson Air Force Base, OH.

<http://iac.dtic.mil/hsiac/Anthro US Military.htm>; web-

site accessed on 9 April 2004.

[6] de Simone G, Devereux R, Daniels S, Mureddu G, Roman

M, Kimball T, Greco R, Witt S, Contaldo F. Stroke volume

and cardiac output in normotensive children and adults. Cir-

culation 1997;95(7):1837–1843.

[7] Fowler N, Westcott R, Scott R. Normal pressure in the right

heart and pulmonary artery. American Heart Journal 1953;

46:264–267.

[8] Barratt-Boyes B, Wood E. Cardiac output and related mea-

surements and pressure values in the right heart and asso-

ciated vessels, together with an analysis of the hemody-

namic response to the inhalation of hight oxygen mixtures

in healthy subjects. The Journal of Laboratory and Clinical

Medicine 1958;51(1):72–90.

[9] Braunwald E, Brockenbrough E, Frahm C, Ross J. Left

atrial and left ventricular pressures in subjects without car-

diovascular disease: Observations in eighteen patients stud-

ied by transseptal left heart catheterization. Circulation

1961;24:267–269.

[10] Heldt T, Shim E, Kamm R, Mark R. Computational model-

ing of cardiovascular response to orthostatic stress. Journal

of Applied Physiology 2002;92(3):1239–1254.

[11] Nichols W, O’Rourke M. McDonald’s Blood Flow in Arter-

ies: Theoretical, practical and clinical principles. 4 edition.

London: Arnold, 1998.

Address for correspondence:

Roger G. Mark, M.D., Ph.D.

rgmark@mit.edu

MIT Room E25-505, Cambridge, MA, 02139, USA

136


