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Abstract

Acute Respiratory Distress Syndrome (ARDS) is a severe lung illness characterized by inflammation and
fluid accumulation in the respiratory system. Historically, ARDS and other forms of respiratory failure
have been treated using mechanical ventilation to help maintain gas exchange in the lungs. However,
clinical investigators are beginning to discover the adverse effects of mechanical ventilation if it is not
applied properly. Specifically, excessive ventilator volumes and pressures may exacerbate existing lung
injury and increase hospital mortality. Furthermore, aggressive ventilation may cause lung injury and
trigger an inflammatory response that is characteristic of ARDS. These findings have alarmed the critical
care community, and many studies have been conducted to find mechanical ventilator settings that reduce
mortality in patients with ARDS. However, there have been no firm recommendations on the optimal
settings for patients who require ventilator therapy for reasons apart from respiratory failure.

In this thesis, we retrospectively examine a large medical database (MIMIC-II) to study the relationship
between mechanical ventilation and the development of ARDS. Specifically, our goals are to (1) find patients
who did not have ARDS at the beginning of mechanical ventilation but who later developed the disease;
(2) identify physiologic and ventilator-associated risk factors for ARDS; and (3) develop a text analysis
algorithm to automatically extract clinical findings from radiology (chest x-ray) reports.

Our findings suggest that acute respiratory distress syndrome is a relatively common illness in patients who
require mechanical ventilation in the ICU (152 of 789 without ARDS at the outset eventually developed
the disease). High plateau pressure (odds ratio 1.5 per 6.3 cmH20, p < 0.001) is the most important
ventilator-associated risk factor for the development of new ARDS. Physiologic risk factors include high
weight, low blood pH, high lactate, pneumonia, and sepsis. Thus it may be possible to reduce the occurrence
of ventilator-induced lung injuries with careful pressure management. However, a randomized prospective
study is needed to support this hypothesis.

Thesis Supervisor: Roger Mark
Title: Distinguished Professor in Health Science and Technology
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Chapter 1

Introduction

1.1 Motivation

The lungs are a vital part of the body's respiratory system, responsible for acquiring oxygen and removing

excess carbon dioxide from the bloodstream. These processes occur in the lung alveoli, microscopic air

sacs that facilitate gas exchange, as shown in Figure 1.1. Pulmonary capillaries surround the alveoli,

allowing gases to diffuse across the thin membrane separating blood in the capillaries from inspired air.

In normal respiratory function, blood high in carbon dioxide and low in oxygen is delivered to the lungs,

and oxygenated blood with lower carbon dioxide is returned to systemic circulation. This process helps to

maintain normal bodily metabolism and homeostasis.

-Epiglottis

- Trachea
-Collar bone

- Lymph nodes

- Bronchus

- Lung

- Diaphragm

Figure 1.1: Anatomy of the respiratory system. Figure adapted from [1].
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Introduction

Failure of the respiratory system has negative consequences: 1) accumulation of carbon dioxide lowers

blood pH and disrupts many biochemical activities; 2) inadequate tissue oxygenation may cause tissue

death and organ failure, increasing the chance for patient death.

Acute respiratory distress syndrome (ARDS) is one of the most severe forms of respiratory failure. It

is associated with prolonged hospitalizations and high mortality rates, making it a formidable complica-

tion to deal with in the intensive care unit (ICU). There is evidence that clinical interventions such as

mechanical ventilation may influence the development of ARDS in patients at risk of the disease. Thus,

there is tremendous value in identifying and understanding the risk factors for ARDS, especially if they

are interventions that can be controlled in a clinical setting.

1.2 Thesis goals

The research conducted in this thesis aims to achieve the following goals:

* To retrospectively examine a large medical database (MIMIC-II) to find patients who do not have ARDS

at the beginning of mechanical ventilation therapy, but who later develop the disease.

* To test the hypothesis that improper mechanical ventilation may cause acute lung injury (ALI)/acute

respiratory distress syndrome (ARDS) in patients who do not have the diseases at the outset. We

achieve this goal by identifying physiologic and ventilator-associated risk factors for ALI and ARDS.

* To design and evaluate an algorithm that automatically extracts clinical findings from chest x-ray

reports.

1.3 Thesis outline

This thesis includes 5 chapters and 1 appendix.

* Chapter 2: ARDS and Mechanical Ventilation, provides a brief background on acute respiratory distress

syndrome and mechanical ventilation. It explains the clinical criteria for ARDS, various ventilator

settings and modes, and summarizes recent studies and clinical trials on ventilator-induced lung injury.

* Chapter 3: Data Extraction and Statistical Methods, describes the methods used to obtain and analyze

data from the MIMIC-II database. It includes an overview of the database (how and from where the

- 16 -



1.3 Thesis outline

data were collected, types of data available), the algorithms used for patient selection, and the basic

theory of logistic regression and prediction.

* Chapter 4: Results, presents the important risk factors associated with the development of ARDS

and the less severe form, acute lung injury (ALI). Physiologic and ventilator-associated risk factors

are examined using univariate analyses, and their relative importance is compared using multivariate

techniques.

* Chapter 5: Discussion and Conclusions, summarizes the important findings and discusses the results

in the context of clinical relevance. Important milestones are listed, and suggestions for future work are

also presented.

* Appendix A: An Automated Radiology Report Reader, presents a detailed description of the algorithm

used to extract information from chest x-ray (text) reports. The algorithm evaluation is included, along

with a summary of the Java source code.

- 17 -



Chapter 2

ARDS and Mechanical Ventilation

2.1 Acute Respiratory Distress Syndrome (ARDS)

Acute Respiratory Distress Syndrome is considered to be the leading cause of acute respiratory failure in

the United States. It is a severe inflammatory disease that causes diffuse lung injury (accumulation of

fluids and other blood contents) and impaired gas exchange in the alveoli. Other names for ARDS include

wet lung, shock lung, leaky-capillary pulmonary edema, and adult respiratory distress syndrome. A milder

form ARDS is called acute lung injury (ALI), which is a precursor to ARDS. In the United States, ARDS is

responsible for 150,000 cases of respiratory failure per year and has an associated mortality rate of between

40% and 50%.

2.1.1 Clinical definition

The clinical definition for ALI and ARDS was established in 1994 by an American-European consensus

conference [2] and includes the following criteria:

1. An acute onset.

2. Bilateral infiltrates revealed by a chest radiograph (x-ray).

3. Not left ventricular heart failure (pulmonary artery wedge pressure < 18 mmHg, or lack of evidence for

heart failure).

4. (i) PaO2 /FiO 2 < 300 mmHg to be considered acute lung injury (ALI).

(ii) PaO2 /FiO 2 < 200 mmHg to be considered acute respiratory distress syndrome (ARDS).

The consensus definition describes ARDS as having an acute or sudden onset, rather than a chronic

progression. The chest x-ray must also show bilateral infiltrates (opaque or hazy regions in both the

left and right lungs). An example of chest x-rays with bilateral infiltrates and clear lungs is shown in

- 18 -



2.1 Acute Respiratory Distress Syndrome (ARDS)

Figure 2.1. When diagnosing ARDS, it is necessary to rule out the possibility of left ventricular heart

failure, also known as congestive heart failure. In this illness, the heart is unable to pump out blood at an

adequate rate, leading to high left ventricular filling pressures. The left atrial pressure also rises, causing

increased pulmonary capillary hydrostatic pressure that forces fluid to enter lung alveoli. A standard

method of distinguishing ARDS from cardiogenic pulmonary edema is to examine the pulmonary artery

wedge pressure (PAWP), which reflects left arterial pressure: heart failure produces an elevated PAWP

(over 18 mmHg) while ARDS does not. The fourth criteria examines the PaO2/FiO 2 ratio, a measure of

gas exchange in the lungs. PaO2 is the partial pressure of oxygen in the blood, and FiO2 is the fraction

of oxygen in inspired air. Under normal conditions, PaO2 is near 100 mmHg, FiO2 is 0.21 (21% oxygen in

free air), and the ratio PaO2/FiO 2 is between 400 and 500 mmHg. In acute lung injury, PaO2/FiO 2 drops

below 300 mmHg while the more severe ARDS has a PaO2/FiO 2 ratio below 200 mmHg. Such conditions

describe "severe hypoxia refractory to oxygen," or low bodily oxygen content despite being treated with

high amounts of oxygen [3].

(a) Normal lungs (b) Bilateral infiltrates

Figure 2.1: Comparison of chest x-rays in normal lungs vs. lungs with bilateral infiltrates, which is
characteristic of ARDS. Infiltrates appear as opaque or hazy regions in the lungs.

2.1.2 Causes of ARDS

ARDS is triggered by a variety of direct and indirect injuries to the lungs. The most common causes are
"inflammatory," in which systemic inflammation from another illness (such as trauma or sepsis) initiates a
diffuse inflammatory injury in the lungs. Specifically, inflammatory mediators (cytokines and neutrophils)
travel to the lungs via the bloodstream and cause pulmonary capillaries to become more permeable, allowing
blood contents (fluid, cells, and proteins) to enter the lung alveoli. The presence of these infiltrates disrupt
gas exchange and cause damage to the lung tissue.

A second class of insults is a result of physical injury, in which lung alveoli are damaged due to mechanical

- 19 -
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ARDS and Mechanical Ventilation

stresses. For example, pulmonary contusion or lung overdistension due to mechanical ventilation may cause

barotrauma (alveolar rupture) and injury of lung tissue, ultimately triggering an inflammatory response

that leads to in lung infiltrates and disrupted gas exchange.

Lastly, there is ARDS due to infection. For example, pneumonia from a bacterial or viral infection may

also cause a respiratory inflammatory response that results in infiltrate edema and impaired gas exchange.

The causes of ARDS may vary, but it is possible that mechanical ventilation can influence one of more of

these underlying illnesses.

2.1.3 Complications due to ARDS

The presence of ARDS often results in prolonged hospital stay and increased mortality due to various

negative consequences. First, impaired gas exchange will cause hypoxia (inadequate oxygen levels) and

hypercapnia (elevated carbon dioxide levels), both of which are life-threatening if left untreated. Second,

it is possible for inflammation in the respiratory system to spread to other organs. The combined effects of

systemic inflammation and hypoxia predisposes patients to multiple-organ failure, greatly increasing the

chance of death. Third, diffuse infiltrates in the lungs may disturb the balance of surfactants in the alveoli,

predisposing certain parts of the lungs to collapse. For this reason, it is possible for atelectasis and/or

consolidation to be present at the same time as ARDS.

2.2 Mechanical ventilation

Mechanical ventilation is a clinical intervention used to assist or replace spontaneous breathing in patients

for days to weeks in the intensive care unit. Its most important function is to maintain gas exchange in

patients with respiratory failure (severe hypoxia and/or hypercapnia) or who cannot breathe on their own.

In this thesis, "mechanical ventilation" refers to positive-pressure ventilation, where air is delivered to the

lungs by applying positive pressures in the patient's airway. In order to control the delivered volumes

and pressures, clinicians must perform intubation, a process by which endotracheal tube is passed through

the mouth, the larynx, and into the trachea (Figure 2.2). In addition, the patient is usually sedated to

prevent injurious interactions between spontaneous and mechanical breathing. For this reason, mechanical

ventilation is considered an invasive intervention that has its own advantages and disadvantages.

- 20 -



2.2 Mechanical ventilation

Endotracheal tube

Figure 2.2: Endotracheal intubation for mechanical ventilation

2.2.1 Mechanical ventilator modes

A variety of ventilator modes are available to accommodate patients with different needs. There are two

general categories of ventilator modes: volume-control and pressure-control. Volume-control modes deliver

a fixed volume with each breath, while pressure-control modes apply a preset maximal pressure at the

airway during inspiration to deliver breaths. Within each of the two categories, a variety of modes exist to

accommodate different breathing patterns. Some modes deal with patients who are unable to breathe on

their own, and others are for patients breathing spontaneously. The most common ventilator modes are

discussed below and summarized in Table 2.1.

Volume-control modes:

* Continuous Mandatory Ventilation (CMV) - breaths are delivered at preset volumes and intervals

regardless of patient effort. This mode is used only when a patient is sedated, paralyzed, or is apneic

(not breathing) to minimize the chance of lung injury.

* Assist Control Ventilation (A/C) - the ventilator delivers a preset volume with each inspiratory

effort. The inspiratory effort is detected by a drop in airway pressure as the patient begins to inhale.

This mode prevents the ventilator from delivering a full tidal volume when the patient is maximally

inhaled, a potential cause of barotrauma.

* Intermittent Mandatory Ventilation (IMV) - breaths are administered at a preset (lower) fre-

quency, and the patient is allowed to breathe spontaneously between ventilator-delivered breaths. Syn-
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ARDS and Mechanical Ventilation

chronous intermittent mandatory ventilation (SIMV) is similar to IMV, except that the ventilator-

delivered breaths are administered according to patient inspiratory effort. IMV and SIMV may be used

in "weaning," the process to help patients slowly breathe independently of the ventilator.

Pressure-control Modes:

* Pressure Control (PC) - a preset pressure is applied during inspiration at a fixed respiratory rate.

The volume of air delivered depends on the patient's airway resistance, lung compliance, and duration

of the inspiration period.

* Pressure Support (PS) - a preset amount of support pressure is used to assist every spontaneous

breath. This mode differs from CMV and A/C in that the amount of pressure is set instead of the tidal

volume. It has been recommended to use pressure support for patients who are breathing spontaneously

but are still in need of assistance.

* Continuous Positive Airway Pressure (CPAP) - the patient is allowed to breathe spontaneously

in the presence of constant (low) airway pressure. This mode may be used to keep the airway open (in

obstructive lung disease), collapsed parts of the lung inflated, and/or to help reduce lung fluid. The

continuous pressure is often used together with other ventilator modes (such as pressure control and

pressure support) to avoid repeated opening and closing of lung alveoli, a potential cause of ventilator-

associated lung injury.

Table 2.1: Mechanical ventilator modes
Mode Description V/P control Level of support
CMV Continuous Mandatory Ventilation Volume Controls breathing
A/C Assist Control Ventilation Volume Assists breathing
IMV Intermittent Mandatory Ventilation Volume Spontaneous breathing
PC Pressure Control Pressure Controls breathing
PS Pressure Support Pressure Assists breathing
CPAP Continuous Positive Airway Pressure Pressure Spontaneous breathing

2.2.2 Mechanical ventilator settings

In addition to ventilator mode, there are a variety of settings used to customize ventilator treatment. Each

variable is set or observed depending on the ventilator mode and breathing status of the patient. These

settings are described here and summarized in Table 2.2.
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* Tidal volume (VT) - the volume of air delivered during one inspiration. Historically, a VT of 10 to 15

mL/kg of predicted body weight has been used. However, lower volumes 6 mL/kg are now recommended

for patients with ARDS or pulmonary edema because these lungs have lower respiratory compliance.

In volume-control modes, VT is an adjustable variable. In pressure-control modes, it is observed and is

a function of ventilator pressures and a patient's lung compliance.

* Peak inspiratory pressure (PIP) - the maximum applied pressure at the airway during inspiration.

PIP is the sum of three pressures: the positive end-expiratory pressure (PEEP), the pressure due to

lung inflation (elastic pressure), and pressure needed to overcome airway resistance as shown in Figure

2.3. PIP, also known as peak pressure, is set in pressure-control modes and observed in volume-control

modes.

w

CaCo
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} Resistive pressure
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TIME

Figure 2.3: Airway pressures during mechanical ventilation. Ventilator settings shown include peak inspi-
ratory pressure, plateau pressure, and PEEP.

* Plateau pressure (Ppiat) - the airway pressure measured immediately after the end of inspiration and

before expiration, a period known as the inspiratory pause or inspiratory hold. Pplat is the most direct

measurement of the pressures sustained by lung alveoli (because it is recorded when net airflow is zero),

so it has been recommended to keep Pplat below a certain threshold (28 cmH2 0) to avoid barotrauma.

Pplat is well correlated with PIP in most patients where airway resistance remains fairly constant.

* Positive end-expiratory pressure (PEEP) - the airway pressure measured at the end of expiration.

A small amount of PEEP (5 to 10 cmH20) is recommended to minimize injury associated with repeated

opening and closing of lung alveoli. Higher PEEP is sometimes used to recruit collapsed areas of the
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lung. This variable can be set in both volume-control and pressure-control modes.

* Oxygen fraction (FiO2) - the fraction of oxygen in inspired air, represented as a number between 0

and 1. Normal air contains 21% oxygen, giving FiO2 = 0.21. Mechanical ventilators can deliver oxygen

levels of up to 100%, although FiO2 is usually kept lower to reduce the chance of oxygen toxicity.

* Respiratory rate (RR) - the frequency of breaths delivered by the ventilator. Respiratory rate in

normal adults ranges between 10 and 20 breaths per minute. In mechanically ventilated patients, a RR

of 8 - 12 breaths per minute is recommended for those without metabolic acidosis. Higher respiratory

rates allow less time for exhalation, a problem for patients with obstructive airway disease. Respiratory

rate and tidal volume can be adjusted to control minute volume, the volume air delivered per minute:

mL
Minute volume ( ) = RR * VT

min

Table 2.2: Mechanical ventilator settings
Setting Description Units
VT Tidal volume mL
PIP Peak inspiratory pressure cmH20
Pplat Plateau pressure cmH20
PEEP Positive end-expiratory pressure cmH20
FiO2  Oxygen concentration fraction
RR Respiratory rate breaths/min

2.2.3 Advantages of mechanical ventilation

The advantages of mechanical ventilation lie in its ability to provide life-saving therapies in the short

term. First, it can be used to inflate parts of the lungs that are collapsed due to atelectasis and provide

necessary aeration to the bilateral lungs. Second, the ability to control the ventilation and amount of

oxygen delivered makes it possible to correct life-threatening hypoxia and hypercapnia. Third, positive

pressures may be used to push out fluid that accumulates in the alveoli, for example to decrease pulmonary

edema caused by heart failure. However, this technique does not apply to ARDS, in which lung infiltrates

include cells and proteins in addition to fluid from the bloodstream. Finally, intubation for mechanical

ventilation may be used to control/protect a patient's airway as a precautionary measure. For example,

patients with head injury, in post-operative recovery, or drug overdose may have an impaired respiratory

drive and be intubated in anticipation of the need for life support and/or to protect the airway. Thus it is

possible for patients without respiratory failure to be intubated for mechanical ventilation.
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2.2.4 Disadvantages of mechanical ventilation

Although it is a life-saving technique, mechanical ventilation also has disadvantages because of its invasive

nature. First, the use of this therapy prolongs hospital stay because it is necessary to "wean" a patient

before disconnecting the ventilator. Such weaning may require several days depending on the patient's

ability to recover. Second, there are numerous complications associated with mechanical ventilation, in-

cluding the risk for pneumothorax (punctured lung), ventilator-associated pneumonia, alveolar injury, and

airway injury due to improper intubation or ventilation. The relationship between mechanical ventilation

and lung injury (including ARDS) is still under investigation, and this thesis aims to contribute to such

an effort.

2.3 Clinical studies on mechanical ventilation and ARDS

2.3.1 The use of mechanical ventilation in ARDS patients

Mechanical ventilation has been an important component of the care of patients with respiratory failure,

and it is clear that this therapy was critical to their survival. Traditionally, tidal volumes of 10 to 15

mL/kg predicted body weight (PBW) have been used in patients with respiratory failure [4]. However, it

has become apparent that ARDS significantly reduces the amount of normally aerated lung tissues and

that high tidal volumes may over-distend the injured lungs [5]. Various clinical trials have thus tried to

examine the relationship between ventilator settings and the outcome of ARDS patients (measured as

hospital mortality, duration of mechanical ventilation, and duration of non-pulmonary organ failure).

Four randomized controlled trials were conducted in the late 1990s to evaluate the benefit of low vs.

traditional tidal volumes in ARDS patients. One of the studies found a significant difference in hospital

mortality between patient groups (38% for VT 5 6 mL/kg PBW vs. 71% for VT = 12 mL/kg PBW, p =

0.001) [6]. The other three trials did not find significant differences in patient mortality, possibly because

the difference between tidal volumes was not as large (VT • 8 mL/kg PBW in low tidal volume groups)

[7, 8, 9]. All of these studies had low statistical power due to small sample sizes (n = 52 to 120), so a large

prospective trial was conducted over three years to address the conflicting results. This trial enrolled 861

patients in 10 institutions and found that lower tidal volumes (VT 5 6 mL/kg PBW vs. VT > 12 mL/kg

PBW) were significantly associated with lower hospital mortality (31% vs. 39.8%, p = 0.007) [10].

There has also been discussion of the protective nature of PEEP in patients with respiratory failure. It

is known that repeated opening and closing of alveoli during respiratory cycle can promote lung injury

in animal models [11, 12]. Thus it has been proposed that PEEP may be used to prevent compression
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atelectasis and limit phasic collapse of airways. However, a large randomized trial to examine the effects

of high vs. low PEEP (15 cmH2 0 vs. 9 cmH20) in ARDS patients produced no difference in mortality,

duration of mechanical ventilation, or duration of non-pulmonary organ failure [13]. Although PEEP has

been used to reduce lung fluid in mild cardiogenic pulmonary edema, it does not reduce lung infiltrates

in ARDS [14, 15]. Thus, low tidal volume is the only method of mechanical ventilation that, to date, has

been shown to improve survival in patients with ARDS in randomized controlled trials.

2.3.2 Ventilator-induced ARDS

There is strong evidence that mechanical ventilation with high tidal volumes and airway pressures can

trigger inflammatory pulmonary edema in animal models [16, 17, 18, 19]. This causes concern for treatment

of human patients who are mechanically ventilated but who do not have lung injury at the outset. In fact,

patients without respiratory failure make up a significant portion (20 - 30%) of all who are mechanically

ventilated in the intensive care unit [20, 21].

Despite the numerous studies on ARDS mortality in humans and lung injury in animals, the evidence for

ventilator-induced ARDS in humans is still scarce. It is known that short-term endotracheal intubation

and long term mechanical ventilation may increase the risk for nosocomial pneumonia [22]. However, there

have been no randomized trials to assess the effects of ventilator settings on new lung injury. The only

studies on this topic have been retrospective analyses, which find high tidal volumes to be a risk factor

for ALI and ARDS [23, 24]. An important limitation to these studies was that high settings may have

been used to correct underlying hypoxia and thus may be an indication of sicker patients. In addition, the

relative importance of high airway pressures and high tidal volume as risk factors has not been examined

previously in detail.

In general, there have been few studies and no firm recommendations on the optimal settings for patients

who require mechanical ventilation for reasons apart from respiratory failure. This thesis aims to investigate

this issue through a retrospective analysis of data collected from intensive care units at a single institution

hospital. The results of this study contribute to the understanding of ventilator-associated ARDS and has

important application in clinical practice.
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Chapter 3

Data Extraction and Statistical Methods

This chapter describes the acquisition and analysis of data from the MIMIC-II database. It includes

an overview of the database (how and from where the data were collected, types of data available), the

algorithms used for patient selection, and the basic theory of odds ratios and logistic regression.

3.1 The MIMIC-II database

The Multi Parameter Intelligent Monitoring of Intensive Care database (MIMIC-II) is a large ICU database

developed to support research in intelligent patient monitoring and clinical decision making [25]. It has

collected data from intensive care units at Beth Israel Deaconess Medical Center (BIDMC) since 2001, and

data acquisition remains an ongoing effort. At the time of research performed for this thesis, MIMIC-II

contained over 17,000 electronic medical records for patients admitted between 2001 and 2005.

The MIMIC-II database contains a variety of information from bedside monitors, mechanical ventilators,

laboratory tests, progress notes, and recorded medical interventions. Continuous waveform data (ECG,

blood pressures, and respiratory waveforms) were obtained from bedside monitors, and vital signs (heart

rate, blood pressures, etc) were recorded by ICU nurses on an hourly basis. Ventilator settings were

documented by respiratory therapists at the time of intubation and as ventilator settings were adjusted.

Blood gas measurements, lab results, IV medications, and fluid I/O were recorded as the interventions

were performed. Nursing progress notes were recorded at various times during the patient's hospital stay.

Radiological films were evaluated by specialists at the time of patient care, and written evaluations were

entered into the database along with the report type and dates. ICD-9 codes were recorded for specific

diseases as required by hospital staff upon patient discharge.
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3.2 Finding patients of interest

To study the effects of mechanical ventilation on the development of ARDS, we looked for patients from the

database who were on the ventilator for longer than 48 hours and who did not have ARDS at the outset.

To rule out cardiogenic causes of pulmonary edema, we excluded patients with evidence of congestive

heart failure from this study. The remaining patients were then grouped according to the quality of lung

health at the beginning of mechanical ventilation. Subsequent development of ARDS was detected by a
deterioration of gas exchange and the presence of bilateral infiltrates in the chest x-ray reports.

3.2.1 Calculating the length of mechanical ventilation

The length of mechanical ventilation was defined as the duration of the first continuous ventilation period

according to recorded ventilator settings. The most commonly recorded setting was ventilator mode, which

was present whenever other ventilator settings were recorded (i.e. tidal volume, respiratory rate). This
information was available approximately once every 3 to 10 hours, thus we assumed that ventilator therapy
has terminated if 24 hours have passed without a recorded ventilator mode. An algorithm was designed
to find the beginning and end points of mechanical ventilation based on this criteria, and an example of
this calculation is shown in Figure 3.1. Only patients who were continuously ventilated for greater than
48 hours were included in this study.

Periods of mechanical ventilation in patient b69983

* Times at which ventilator mode was recorded
- Beginning of ventilation period (detected)
- End of ventilation period (detected)First continous period

of mechanical ventilation

LLý
30

Time (days)

Figure 3.1: Determining the duration of the first continuous mechanical ventilation period
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3.2.2 Identifying patients without congestive heart failure

Diagnosis of congestive heart failure (CHF) usually includes a pulmonary artery wedge pressure (PAWP) of

greater than 18 mmHg. However, the majority of patients examined in this thesis did not have a recorded

PAWP (86%), so patients with CHF were identified using ICD-9 code 428 and were subsequently excluded

from the study. Although the accuracy of using ICD-9 codes to identify CHF has not been properly tested,

this method has generally been accepted for retrospective clinical studies [26, 27, 28].

3.2.3 Calculating the PaO2/FiO 2 ratio

The PaO2/FiO 2 trend was used to determine the quality of gas exchange in the lungs as a function of

time. This trend was calculated by finding the ratio of each PaO2 blood gas measurement to the nearest

FiO2 before the corresponding blood gas value. An example of PaO2, FiO2, and the calculated PaO2/FiO 2

trend is shown in Figure 3.2. This patient developed hypoxemia refractory to oxygen on the 4th day of

mechanical ventilation.

SPatient b70083
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Time since the beginning of mechanical ventilation (days)

Figure 3.2: Example of the PaO2/FiO 2 ratio (bottom) calculated from PaO2 (top) and FiO2 (middle).
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3.2.4 Determining the state of lung health at the beginning of mechanical ventilation

Patients who were mechanically ventilated for more than 48 hours and who did not have evidence of CHF

were then categorized into three groups based on their initial lung health: 1) no lung injury, 2) moderate

lung injury, or 3) severe lung injury. The PaO2/FiO 2 criteria for each category is shown in Table 3.1, and

patients with severe lung injury at the outset of mechanical ventilation were excluded.

Table 3.1: Categories for initial lung health
Category Criteria during first 12hrs of mechanical ventilation
Healthy lungs 2 or more PaO2/FiO 2 > 300 mmHg, and

1 or less PaO2/FiO 2 < 300 mmHg

Moderate lung injury (ALI) 2 or more PaO2/FiO 2 < 300 mmHg, and
2 or more PaO2/FiO 2 > 200 mmHg, and
1 or less PaO2/FiO 2 < 200 mmHg

Severe lung injury (ARDS) 2 or more PaO2/FiO 2 < 200 mmHg

3.3 Detecting the onset of ALI and ARDS

To study the risk factors for ALI and ARDS, we examined the following two outcomes: A) the development

of acute lung injury (ALI) in patients with healthy lungs at the outset, and B) the development of acute

respiratory distress syndrome (ARDS) in patients with healthy or moderately injured lungs at the outset.

We have excluded congestive heart failure as a potential cause for hypoxemia, so it remains for us to

detect an acute drop in PaO2/FiO 2 ratio and the appearance of bilateral infiltrates in chest x-rays. These

outcomes and their corresponding criteria are summarized in Table 3.2.

Table 3.2: Outcomes of interest
Outcome Initial lung health Criteria
ALI healthy lungs Not congestive heart failure based on ICD-9 codes

PaO2/FiO 2 drops < 300 mmHg for 24hrs
Bilateral infiltrates/consolidations in chest x-ray reports

ARDS healthy lungs or Not congestive heart failure based on ICD-9 codes
moderate lung injury PaO2/FiO 2 drops < 200 mmHg for 24hrs

Bilateral infiltrates/consolidations in chest x-ray reports
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3.3.1 Detecting a deterioration in gas exchange

In patients without lung injury at the outset, we look for the development ALI defined by a drop of

PaO2 /FiO 2 below 300 mmHg for 24 hours (note: this also includes the outcome that patients with healthy

lungs later develop ARDS). In patients with healthy or moderately injured lungs, we look for the de-

velopment of ARDS as characterized by a drop in PaO2/FiO 2 below 200 mmHg for at least 24 hours.

The two distinctions are made to independently asses the progression of healthy to injured lungs, and

healthy or partially injured to severely injured lungs. An example of PaO2/FiO 2 trend that represents the

development of ALI is shown in Figure 3.3.
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Figure 3.3: An example of gas exchange deterioration in ALI, indicated by a drop in
300 mmHg for 24hrs or more.

PaO2/FiO 2 below

3.3.2 Finding bilateral infiltrates in chest x-ray reports

In patients with a deteriorating gas exchange, chest x-ray (text) reports from 24 hrs before to 72 hours

after the drop in PaO2 /FiO 2 ratio were assessed for the presence of bilateral infiltrates and/or lung con-

solidations. A patient had infiltrates if the report described "opacities," "haziness," "edema," "inflamed,"
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"densities," "ARDS," etc. They had lung consolidations if "consolidation," "atelectasis," or "collapse" was

present. Infiltrates in one lung and atelectasis in the other was considered consistent with ALI/ARDS.

On average, approximately four reports were evaluated for each patient who had a deterioration in gas

exchange.

To aid in the diagnosis of bilateral disease, an algorithm was developed to automatically extract information

from the chest x-ray reports. This algorithm looked for bilateral infiltrates/consolidations by searching for

specific phrases the same way a human reader would. The diagnoses made by this algorithm were verified

manually by two expert intensivists (and a graduate student), and discrepancies were settled in a joint

reading of the reports. The manual evaluations were later used as a gold standard to assess the performance

of the text analysis algorithm; a detailed description of the design and evaluation of this algorithm is

presented in Appendix A. Patients were diagnosed with ALI or ARDS only if the drop in PaO2 /FiO 2 had

a corresponding chest x-ray report that indicated the presence of bilateral infiltrates/consolidations.

3.4 Extracting data for analysis

3.4.1 Data variables

Once the patient cohort was identified, physiologic information and ventilator settings were collected from

the first 24 hours of mechanical ventilation for all patients who were on the ventilator for > 48 hrs, who

did not have CHF, and who did not have ARDS at the onset of mechanical ventilation. If new lung injury

occurred on the first day, data were collected prior to the new injury. The potential risk factors for ALI and

ARDS included demographic variables (sex, age, weight, height), indicators of organ health and underlying

illness (SAP score, creatinine, ALT, pneumonia, sepsis), ventilator settings (VT, PPlat, PIP, PEEP, FiO2 ,

RR) and indicators of gas exchange and metabolism (arterial pH, PaO2 , PaCO2 , bicarbonate and lactate).

Table 3.3 lists all the variables extracted for statistical analyses. When more than one ventilator setting was

present on a given day, the "worst" values (highest tidal volume, highest ventilator pressures) were selected.

For all non-ventilator variables, the first value after the outset of ventilation was collected. Presence of

pneumonia and sepsis as an underlying illness was identified by ICD-9 codes (480 - 486 for pneumonia, 038

for sepsis).

3.4.2 Calculated variables

Calculated variables include the predicted body weight (PBW), normalized tidal volume, static respiratory

compliance, SAP score, and PaO2/FiO 2 ratio. When patient height information was available (60% of
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Tat
Variable
Demographics
sex
age
weight
height

Organ health
SAPS
creatinine
ALT
pneumonia
sepsis
Cr,

Ventilator settings
VT
VT/PBW

PPlat
PIP
PEEP
FiO2
RR

Gas exchange
PaO2
PaCO2
pH
bicarbonate
lactate

)le 3.3: Variables extracted for statistical analysis
Units Description

M=1, F=0
years
kilograms
inches

SAP units
mg/dL
units/L
present=1, absent=0
present=1, absent=0
mL/cmH20

mL
mL/kg
cmH20
cmH20
cmH20
fraction
breaths/min

mmHg
mmHg
pH
mmol/L
mmol/L

patient sex
patient age
patient weight
patient height

simplified acute physiology score
a measure of kidney function
alanine aminotransferase, a liver enzyme
pulmonary edema due to a lung infection
severe immune response to an infection
static respiratory compliance

set tidal volume
tidal volume per predicted body weight
plateau pressure
peak inspiratory pressure
positive end-expiratory pressure
oxygen fraction
total respiratory rate

partial pressure of 02 in arterial blood
partial pressure of CO 2 in arterial blood
pH of arterial blood
concentration of HCO3 in arterial blood
concentration of lactate in arterial blood

records), predicted body weight was calculated from patient height using the following formulae [23]:

PBWM in kg = 50 + 0.91 * (height in cm - 152.4)

PBWF in kg = 45.5 + 0.91 * (height in cm - 152.4)

The normalized tidal volume was then calculated using predicted body weight:

Normalized tidal volume = VT
PBW
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The static respiratory compliance Cr (a measure of lung elasticity) was calculated as:

VT
Crs =

Pplat - PEEP
(3.4)

The Simplified Acute Physiology Score (SAPS) was determined using physiologic data from the first 24

hours of admission. This data included age, heart rate, systolic ABP, temperature, respiratory rate, urine

output, BUN, hematocrit, white blood count, glucose, potassium, sodium, bicarbonate, and Glasgow Coma

score. Each variable is mapped to a number between 0 and 4, and the scores are summed to give the SAP

score. The guidelines used to calculate SAPS is shown in Table 3.4.

Table 3.4: Variables and values used to calculate SAPS I score.
Variable add 0 add 1 add 2 add 3 add 4
Age (years) < 45 45 - 55 55 - 65 65- 75 > 75

HR (beats/min) 70 - 110 55 - 70 40 - 55 < 40
110-140 140-180 > 180

ABP sys (mmHg) 80 - 150 55 - 80 < 55
150- 190 > 190

Temp (oC) 36 - 38.4 34 - 36 32 - 34 30- 32 < 30
38.4 - 38.9 38.9 - 41 > 41

Resp rate (breaths/min) 11 - 24 9 - 11 6 - 9 34 - 49 < 6
24 - 34 cpap or vent > 50

Urine output (L/day) 0.7 - 3.5 3.5 - 5 0.5 - 0.6 0.2 - 0.5 < 0.2
>5

BUN (mg/dL) 10- 20 < 10 80- 100 100- 155 > 155
20 - 80

Hematocrit (%) 30 - 46 46 - 50 20 - 30 < 20
50- 60 > 60

WBC count (103 /mm 3 ) 3 - 15 15 - 20 1 - 3 < 1
20 -40 > 40

Glucose (mg/dL) 70 - 250 250 - 500 50 - 70 30 - 50 < 30
500 - 800 > 800

Potassium (mEq/L) 3.5- 5.5 3- 3.5 2.5- 3 6- 7 < 2.5
5.5-6 >7

Sodium (mEq/L) 130- 150 150- 155 120- 130 110- 120 < 110
155- 160 160- 180 > 180

HCO3 (mEq/L) 20-30 10-20 10-20 < 5
30- 40 > 40

Glasgow Coma Score > 13 10 - 13 7 - 10 4 - 7 < 4
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3.5 Statistical analyses - odds ratios and logistical regression

This section explains the theory behind odds ratios, logistic regressions, and the p-value. The odds ratio

is a useful tool for examining the relationship between a variable and a binary ("yes or no") outcome,

and at the same time providing a confidence interval for the significance of that relationship [29]. The

variable being examined can be either a continuous variable (i.e. age) or binary variable (i.e. sex), which

give us tremendous flexibility in the type of data analysis performed. More importantly, odds ratios in

logistical regression allow us to examine the relative importance of variables in affecting an outcome. For

example, logistic regressions ultimately help us answer the question, "is tidal volume or airway pressure

more important in the development of ventilator-associated lung injury?"

3.5.1 The odds ratio

6-sided die 4-sided die

Figure 3.4: Illustrating the odds ratio using two dice.

The following example illustrates the concept of odds ratio. Consider rolling a normal 6-sided die 60 times

to produce, in this case, a total of 10 ones. From this observation, the probability of obtaining a one is

10/60. However, the odds of rolling a one is -g = , because the odds is defined as:

Odds # of successes
# of failures

Now we roll a 4-sided die 60 times which, by chance, produces 15 ones. This result is shown in Table 3.5.

Table 3.5: Hypothetical results from rolling a 6-sided and 4-sided die
# of ones # of other outcomes

6-sided die 10 50
4-sided die 15 45

The odds of rolling a one on the 4-sided die is 15= . We can use the odds ratio (OR) to examine the

relationship between choosing the 4-sided die and obtaining the result one. The "ratio of the odds" is
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calculated as the odds for rolling a one using the 4-sided die divided by the odds associated with rolling a

one using the 6-sided die :

odds of rolling one using 4-sided die 15/45 5 =OR - = 1.6 (3.6)odds of rolling one using 6-sided die 10/50 3

This calculation tells us that there is a higher odds associated with throwing a one if we pick the 4-sided

die as opposed to the 6-sided die. In general, there is a positive association between two observations if

the odds ratio is greater than 1 and a negative association when the odds ratio is between 0 and 1. Note

that we obtain the same odds ratio when asking the reverse question, "what are the odds that we picked

the 4-sided die given that the roll resulted in a one?" The odds ratio remains:

15/10 5 (3
45/50 3

This property makes the odds ratio a useful indicator of the strength of relationship between two observa-

tions. The general formula to calculate an odds ratio is given as:

odds of "success" in case 1
odds of "success" in case 2

3.5.2 Logistic regression

Logistic regression is a method by which we can examine the relationship between predictor variables and

a binary ("yes/no") outcome. In the dice example we calculated the odds ratio between two binary events

(picking the 4-sided die and rolling a one). When the predictor variable is continuous (ie. patient age)
rather than binary (choosing 4-sided or 6-sided die), a logistic regression model can be used to calculate

the odds ratio associated with a certain change in the variable.

In univariate logistic regression, a single variable X is used to estimate the probability of success p using
the following formula:

In( ) = a + /X (3.9)
1-p

Given some observed data (a set of X and associated outcomes), the optimal values for a and 3 are
calculated to best fit the data. Various statistical software packages are available to determine these
coefficients, and Matlab was used for the calculations in this thesis. If X is a binary variable, it can be
represented as O's and 1's in the logistic regression model. When we solve for p in equation 3.9, we obtain
an expression for the estimated probability:

- 37 -



Data Extraction and Statistical Methods

1 + e-(a+px) (3.10)

The graph of the estimated probability has a sigmoidal shape, as shown in Figure 3.5. A log plot of the

odds of success (1 ) as a function X is also shown in Figure 3.5.

Predictor variable X

Predictor variable X

Figure 3.5: Logistic regression curve has a sigmoidal shape, here a = 0,/P = 1, giving p = +,x (top).
The odds of success P (shown in log scale) increases exponentially as a function of X (bottom).

3.5.3 Odds ratios in logistical regression

Given the coefficients a and 3, we can calculate the odds ratio associated with a positive outcome and

particular increase in X, which we call Ax:

odds of success at X + Ax ea+(x+a) = e
OR = odds of success at X e +

odds of success at X ea+PX
(3.11)
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Again, if ORAx > 1, the positive outcome is more likely to occur at a higher X. The reverse is true if

ORAx < 1. To find the 95% confidence intervals for each odds ratio, we need the standard error associated

with each variable. The standard error, along with p-values and other performance measures, is calculated

by statistical packages that perform the logistic regression. The 95% confidence intervals for the odds ratio

is then calculated using the regression coefficient f, the standard error SE, and a given change in the

variable Ax:

ORupper _ e(3+1.96*SE)*Ax (3.12)

ORlwer = e(P-1.96*SE)*Ax (3.13)

3.5.4 Multivariate logistic regression model

To examine the relationship between multiple variables and a particular binary outcome, we can use a

multivariate logistic regression model with the following formula:

pln( ) = a +i XiI + 02X 2 +... + OnXn (3.14)
1-p

In this equation, Xi is the value of the i~h variable, p is the estimated probability of a particular outcome,

and the #i's are coefficients associated with the it h variable. The optimal a and 3's are again obtained

computationally, and the odds ratios can be calculated in the same manner as in the univariate regression.

3.5.5 The p-value

It is important to discuss the meaning of the p-value: the p-value is the probability that the results

observed were due to chance alone. The smaller the p-value, the higher the significance level and stronger

the evidence against the null hypothesis (the idea that the results were due to random chance) [30]. A

suggested interpretation of this statistic is shown in Figure 3.6. Historically, p = 0.05 has been used as the

threshold below which results may be considered significant [31], and results with p < 0.001 provide even

stronger evidence for a significant result. When the p-value is below 0.05, the 95% confidence intervals for

odds ratios are both above 1 for a positive relationship and below 1 for a negative relationship.
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S 1.0

0.1

0.01

0.001

0.0001

Figure 3.6: Suggested interpretation of p-values from published medical research, adapted from [30].

3.5.6 Performing regressions

Univariate and multivariate logistical regressions were used to find correlations between predictor and out-come variables. The outcomes of interest were development of ALI or ARDS after the onset of mechanicalventilation. In the univariate analysis odds ratios were calculated per one standard deviation increasein predictor variables. Statistically significant variables (p < 0.05) were then considered for inclusion ina multivariate model. A forward stepwise and backward stepwise logistic regression were performed tofind the optimal model in which all contained variables were statistically significant predictors of ALI andARDS. SAPS and initial PaO2/FiO 2 were forced into the multivariate model to control for severity ofillness.

To further examine the relative importance of ventilator settings as risk factors for ALI and ARDS, a secondmultivariable model was created using the following variables: tidal volume, plateau pressure, PEEP,PaO2 /FiO2 , SAPS, and patient weight. In multivariate analyses only, missing values were filled usingaverages calculated from the entire cohort of patients without ARDS at the onset of mechanical ventilation.All data analyses were performed using Matlab (http://www.mathworks.com/products/matlab/) 
and itssupporting statistical toolboxes.
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Chapter 4

Results

This chapter presents the results of statistical analyses for two outcomes of interest: (1) the progression from

healthy lungs to acute lung injury (ALI) and (2) the development of acute respiratory distress syndrome

(ARDS) in patients with healthy or moderately injured lungs at the outset of mechanical ventilation. Both

analyses include a comparison between patients who did and did not develop new ALI/ARDS, univariate

and multivariate analyses of potential risk factors, and diagrams to visualize the relationship between risk

factors and new lung injury. In addition, the characteristics of the patient cohort are described to give a

brief overview of patients who require ventilator therapy in the intensive care unit.

It is important to note that the analyses for the ARDS cohort have more statistical power than that of the

ALI cohort simply because the number of patients in the former group is larger. This difference will affect

the way results are interpreted, and the discussion of these results are presented in the following chapter.

4.1 Characteristics of the patient cohort

The MIMIC-II database contains a total of 17,493 patients admitted to Beth Israel Deaconess Medical

Center (BIDMC) between 2001 and 2005. Of these patients, 2624 required mechanical ventilation for

longer than 48 hours, and a subset (1366) did not have congestive heart failure (CHF) during their stay.

The average age in these 1366 patients was 59 years and the average length of ICU stay was 13 days.

When broken down by location, 29% of patients were in medical ICU, 28% in surgical ICUs, 28% in the

cardiac surgery recovery unit, and 15% in coronary care units. The categorization of all patients from the

database is shown in Figure 4.1.
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4.1 Characteristics of the patient cohort

I All patients in MIMIC-II database admitted between 2001 and 2005 (n = 17,493) 1

Patients intubated for mechanical ventilation (n = 6977)

Patients mechanically ventilated > 48hrs (n = 2624)

No CHF based on ICD-9 codes (n = 1366)1

No lung injury
the onset of m
ventilation (n =

at ALI (not ARDS) D

416) ventilation (n 373)

Worsening gas
exchange (n = 185)

IBilateral n •iniltrates B
(n = 120) - ALI

Figure 4.1: Patient distribution from the MIMIC-II database. This study examined the development of
ALI in patients initially without lung injury (A to B), and the development of ARDS in patients initially
without ARDS (A and D to C and E)
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Results

Of the 1366 patients mechanically ventilated for longer than 48hrs and who did not have CHF during

their stay, 416 had no lung injury at the onset of mechanical ventilation, 373 had moderate injury, and

577 had severe lung injury. The average length of ventilator therapy increased with the severity of lung

sickness (8.6 days in healthy lungs, 9.6 days in moderate injury, 11.2 days for severe injury). Similarly, the

average length of ICU stay increased for patients with sicker lungs (11.7 days, 12.3 days, and 14.6 days

respectively). The average weight was also higher among patients with sicker lungs (75 kg, 83 kg, and 82

kg respectively). These and other patient characteristics are summarized in Table 4.1.

Table 4.1: Characteristics of patient cohort, grouped by initial lung health.

All ventilated > No lung injury at ALI at outset ARDS at outset
48 hrs (n=1366)a outset (n=416)a (n = 373) a  (n = 577)a

Age (years) 59 + 18 (16 - 99) 58 ± 20 (17 - 99) 62 ± 17 (16 - 91) 58 + 18 (16 - 92)
Males (n, %) 787, 58% 220, 53% 217, 58% 350, 61%
Height (cm) 170 + 16.7 168 + 15 171 + 22 170 ± 13.3
Weight (kg) 81 ± 23 75 + 21 83 ± 24 82 ± 22
SAPSb  9.3 + 2.9 9.2 ± 3 9.3 ± 2.8 9.4 ± 3
Days of ICU stayc 13.1 + 10.1 11.7 + 8.9 12.3 + 8.7 14.6 ± 11.4
Days of mech. 10 + 9.6 8.6 + 7.6 9.6 ± 8.8 11.2 + 11
ventilationd

aexcludes patients with congestive heart failure according to ICD-9 codes; bSAPS score based on data from first 24 hours of
ICU stay; Clength of stay in a single care unit; dlength of first continuous mechanical ventilation period.

4.2 Development of Acute Lung Injury (ALI)

Of 416 patients without lung injury on the first day of mechanical ventilation, 185 had worsening PaO2/FiO2 ,

of which 120 (29%) also had bilateral infiltrates and met ALI criteria. The average initial PaO2/FiO2 in

all patients without lung injury at the outset was 407 ± 101 mmHg, and a histogram of these values is

shown in Figure 4.2. The average time until the onset of ALI was 2.6 days from the beginning of mechanical

ventilation. Figure 4.3 shows an abnormal case of a patient with healthy lungs at the outset but had one

PaO2/FiO2 < 200 mmHg. Abnormal readings such as this may be due to random error in laboratory

tests or from human error.
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Figure 4.2: Distribution of initial PaO2/FiO2 in 416 patients without ALI at the outset of ventilation.
The inclusion criteria for this cohort was 2 values PaO2/FiO2 > 300 and 1 or less PaO2/FiO2 < 300
mmHg.
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Figure 4.3: Example of patient with initial PaO2/FiO2 below 200 mmHg but who did not have lung injury
at the outset.
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Results

Table 4.2 compares demographic information, severity of illness, and initial ventilator settings between the

patients who did and did not eventually develop ALI. On average, patients who acquired ALI required

more days of mechanical ventilation (11 days vs. 8 days), had a longer ICU stay (15 days vs. 10 days),
had higher weight (80 kg vs. 73 kg), were more likely to have pneumonia (44% vs. 31%), and were more

likely to have sepsis (29% vs 15%). The initial PaO2/FiO2 ratio was also lower in patients who eventually

developed ALI (384 mmHg vs. 417 mmHg).

Table 4.2: Characteristics of 416 patients initially without ALI.
Variable Don't develop ALI Develop ALI

(n = 296) (n = 120)
Age (years) 57.9 + 20.5 58.7 ± 19.9
Sex (male %) 53% 55%
Weight (kg) 73.3 ± 20.2 79.6 ± 22.6
Height (inches) 65.5 + 6.8 66.9 + 4.4
Length of stay (days) 10.5 + 8 14.7 + 10.2
Length of ventilation (days) 7.5 ± 6.6 11.2 ± 9.2
SAPS (SAPS score) 9.1 ± 2.9 9.6 ± 3
VT (mL) 617 + 104.6 630.3 + 116.9
PEEP (cmH20) 5.6 + 1.9 5.9 ± 2.1
PIP (cmH20) 28.5 + 7.7 31.4 + 9.1
Pplat (cmH2 0) 21.2 ± 5.6 23.5 - 5.8
PaO2 /FiO2 (mmHg) 416.5 ± 107.6 383.8 ± 100.8
PaCO2 (mmHg) 38.3 + 9 39 ± 11.3
C, (mL/cmH20) 48.5 ± 17.5 44.2 ± 16.5
Pneumonia (%)a 31% 44%
Sepsis (%)a 15% 29%
ARDS (%)a 19% 28%

aUnderlying illnesses according to ICD-9 codes.

4.2.1 Univariate analysis of risk factors for ALI

Univariate continuous-variable logistical regression revealed the following variables to be associated with

the development of ALI: Pplat (odds ratio 1.5 per standard deviation, 95% confidence interval 1.4 - 1.8),

sepsis (OR 2.4 for presence of sepsis, 95% CI 1.4 - 3.9), PIP (OR 1.4 per std, 95% CI 1.1 - 1.8), patient

weight (OR 1.3 per std, 95% CI 1.1 - 1.7), pneumonia (OR 1.8 for presence of pneumonia, 95% CI 1.1 -

2.7), lactate (OR 1.3 per std, 95% CI 1.1 - 1.6), and C,, (OR 0.76 per std, 95% CI 0.6 - 1.0). VT and VT

per predicted body weight (p = 0.265 and 0.740) were not found to be significantly associated with new

ALI. Table 4.3 summarizes the odds ratios and p-values from univariate logistic regressions.

A visualization of the relationship between day one plateau pressure and new lung injury is shown in Figure

4.4. The percentage of patients who develop ALI increases from 20% to 40% as Pplat increases from 16 to
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Table 4.3: Univariate analysis of risk factors for ALI in 416 patients without ALI at the outset of mechanical
ventilation. Variables are listed in order of statistical significance (lowest to highest p-value).

Variable Mean Standard Dev Odds Ratio per STD p-value
(STD) (95% confidence interval)

Pplat 21.9 5.8 cmH20 1.48 (1.19 - 1.84) < 0.001
Sepsisa - - 2.36 (1.43 - 3.92) 0.001
PIP 29.4 8.2 cmH20O 1.41 (1.13 - 1.75) 0.002
Weight 75.2 21.1 kg 1.34 (1.08 - 1.66) 0.008
Pneumoniaa  - - 1.76 (1.13 - 2.71) 0.012
Lactate 2.8 2.3 mmol/L 1.31 (1.05 - 1.64) 0.016
CrS 47.3 17.3 mL/cmH20 0.76 (0.60 - 0.97) 0.024
SAPS 9.2 3.0 score 1.20 (0.97 - 1.48) 0.093
Height 66.0 6.1 inches 1.37 (0.94- 2.00) 0.097
PEEP 5.7 2.0 cmH20 1.16 (0.95 - 1.42) 0.151
pH 7.4 0.1 pH 0.86 (0.69 - 1.06) 0.155
Creatinine 1.2 1.2 mg/dL 1.15 (0.94 - 1.40) 0.179
VT 620.9 108.4 mL 1.13 (0.91 - 1.40) 0.265
Bicarbonate 23.1 5.1 mmol/L 0.91 (0.74 - 1.13) 0.411
ALT 170.1 550.6 units/L 0.89 (0.65 - 1.21) 0.451
PaCO2  38.5 9.7 mmHg 1.08 (0.88 - 1.33) 0.468
Sex (if male)a - 0.92 (0.72 - 1.69) 0.640
Age 58.1 20.3 years 1.04 (0.84 - 1.29) 0.733
VT/PBW 10.2 2.3 mL/kg 0.96 (0.73 - 1.25) 0.740
PaO2  257.0 115.8 mmHg 1.03 (0.83 - 1.27) 0.804
Resp rate 20.8 6.1 bpm 0.98 (0.79 - 1.21) 0.849

a Odds ratio calculated for presence of sepsis, pneumonia, and male sex. SDT, standard deviation; PIP, peak inspiratory pres-
sure; Ppalt, plateau pressure; PEEP, positive end-expiratory pressure; VT, tidal volume.; SAPS, simplified acute physiology
score; PBW, predicted body weight; Cr,, static respiratory compliance.
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32 mmHg. The association between high plateau pressure and incident ALI in the context of other risk

factors is explored in multivariate regressions.

n
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-
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j 7 3
24 32 40

Plateau pressure (cmH 2O)

n< 10
I n >= 10....

LoPistical fit odds ratio = 1 5 / 6 cmH O0

3 4024
Plateau pressure (cmH 2O)

Figure 4.4: Day one plateau pressures in 416 patients without ALI at the onset of mechanical ventilation
(top), and the risk of developing ALI as a function of Pplat (bottom).

4.2.2 Multivariate analysis of risk factors for ALI

Variables with p-values of less than 0.05 from univariate regressions (Pplat, sepsis, PIP, pneumonia, lactate,
and C,r) were considered for multivariate regression analysis using a forward-search and backward-search
method. Both searches produced an optimal model that included Pplat, lactate, and sepsis. PaO2/FiO2
and SAPS were then added to model to control for severity of illness, giving the final combination of
variables: sepsis (OR 1.99, p = 0.011), Pplat (OR 1.32 per std, p = 0.014), PaO2/FiO2 (OR 0.75 per
std, p = 0.31), lactate (OR 1.23 per std, p = 0.049), and SAPS (OR 1.16 per STD, p = 0.185). All
variables except for SAPS remained significant predictors of ALI with a p-value < 0.05. This model is
shown in Table 4.4.

Another multivariate model was created to examine the relative contributions of the ventilator pressures
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4.2 Development of Acute Lung Injury (ALI)

and tidal volumes to the development of ALI. This analysis, shown in Table 4.5, included the following

variables: VT, Pplat, PEEP, patient weight, PaO2/FiO2 , and SAPS. PIP is known to be correlated with

Pplat (R2 = 0.53, p < 0.001). Including PIP and Pptat in the same model decreases the statistical power

of both variables as risk factors for lung injury, so only one (Pplat) was included. The second multivariate

regression shows that Pprat (OR 1.34 per std, p = 0.016) and PaO2/FiO2 (OR 0.75 per std, p = 0.03)
remained significant predictors of ALI while VT, PEEP, weight, and SAPS did not (p > 0.05).

Table 4.4: Multivariate regression of risk factors for ALI in 416 patients initially without ALL. Optimal
model was achieved through forward and backward search of risk factors found in univariate analysis.

Variable Mean Standard Dev Odds Ratio per STD p-value
STD (95% confidence interval)

Sepsisa - - 1.99 (1.16 - 3.36) 0.011
Pplat 21.9 5.6 cmH20O 1.32 (1.06 - 1.66) 0.014
PaO2/FiO2  407.1 106.6 mmHg 0.75 (0.57 - 0.97) 0.031
Lactate 2.8 2.1 mmol/L 1.23 (1.00 - 1.51) 0.049
SAPS 9.2 3.0 SAP score 1.16 (0.93 - 1.45) 0.185

SDT, standard deviation; SAPS, simplified acute physiology score. aOdds ratio calculated for presence of sepsis.

Table 4.5: Multivariate analysis of ventilator-associated risk factors for ALI in 416 patients without ALI
at the outset. PaO2/FiO2 and weight were included to control for severity of illness.

Variable Mean Standard Dev Odds Ratio per STD p-value
(95% confidence interval)

Pplat 21.9 5.6 cmH20 1.34 (1.06 - 1.71) 0.016
PaO2/FiO2  407.1 106.6 mmHg 0.75 (0.57 - 0.97) 0.030
SAPS 9.2 3.0 SAP score 1.24 (0.99 - 1.55) 0.056
Weight 75.2 20.5 kg 1.27 (0.98 - 1.64) 0.066
VT 620.9 106.3 mL 0.95 (0.73 - 1.23) 0.675
PEEP 5.7 1.9 cmH20 0.99 (0.79 - 1.24) 0.926

SDT, standard deviation; SAPS, simplified acute physiology score.
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4.3 Development of Acute Respiratory Distress Syndrome (ARDS)

This section describes the patient cohort used to identify risk factors for ARDS. Of 789 patients with

moderate or no lung injury (but not ARDS) at the beginning of mechanical ventilation, 305 had worsen-

ing PaO2/FiO2 , of which 152 (19%) also had bilateral infiltrates and met ARDS criteria. The average

PaO2/FiO2 at the outset was 302 ± 110 mmHg, and a histogram of these values is shown in Figure 4.5.

The average time until the development of ARDS was 3.4 days from the beginning of ventilator therapy.

c 100

50
U 50

n 1 2
0 100

Figure 4.5: Distribution of PaO2/FiO2 in
2 PaO2/FiO2 > 200 and 1 or less Pa02 /

2 4
3W 400 UU 600 700

PaO2 /FiO 2 (mmHg)

789 patients without ARDS at the outset. Inclusion criteria was
Fi02 < 200 mmHg in the first 12hrs of mechanical ventilation.

Table 4.6: Characteristics of 789 patients initially without ARDS.
Variable Don't develop ARDS Develop ARDS

(n = 636) (n = 152)
Age (years) 60.3 + 19.1 57.9 + 18.2
Sex (male %) 54% 50%
Weight (kg) 77.4 + 22.4 85.7 ± 24.2
Height (inches) 66.4 + 5.6 67.8 ± 11.8
Length of stay (days) 11.1 ± 8.1 15.5 ± 10.6
Length of ventilation (days) 8.2 + 7.4 12.8 ± 10.3
SAPS (score) 9.2 ± 2.8 9.5 + 3
VT (mL) 618 ± 112 651.7 ± 119.1
PEEP (cmH20) 5.8 ± 2 6.6 ± 2.8
PIP (cmH20) 30 ± 8.2 33.8 ± 9

Pplat (cmH20) 22.5 ± 6.3 25.4 ± 5.9
PaO2/FiO2 (mmHg) 279 ± 93 230.2 ± 85.3
PaCO2 (mmHg) 39.6 ± 10.9 40.5 ± 11.1
Cr, (mL/cmH20) 45.7 ± 18.5 41.9 ± 14.7
Pneumonia (%)a 36% 44%
Sepsis (%)a 20% 32%
ARDS (%)a 21% 33%

aUnderlying illnesses according to ICD-9 codes.
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4.3 Development of Acute Respiratory Distress Syndrome (ARDS)

Table 4.6 compares demographic information, severity of illness, and day one ventilator settings between

patients who did and did not later have acute respiratory distress syndrome. On average, those who

developed ARDS required a longer period of mechanical ventilation (12.8 vs. 8.2 days), had a longer

hospital stay (15.5 vs. 11.1 days), had a higher incidence of pneumonia (44% vs. 36%) as well as sepsis

(32% vs 20%), and had a lower initial PaO2/FiO2 (302 vs. 355 mmHg).

4.3.1 Univariate analysis of risk factors for ARDS

Univariate logistic regressions identified the following variables to be well associated with the development

of ARDS (Table 4.7): PIP (OR 1.5 per std, 95% CI 1.3 - 1.8), Pplat (OR 1.5 per std, 95% CI 1.3 - 1.9),
patient weight (OR 1.4 per std, 95% CI 1.2 - 1.7), PEEP (OR 1.4 per std, 95% CI 1.2 - 1.7), sepsis

(OR 1.95, 95% CI 1.3 - 2.9), VT (OR 1.4 per std, 95% CI 1.1 - 1.7), pneumonia (OR 1.8, 95% CI 1.2 -

2.7), blood pH (OR 0.8 per std, 95% CI 0.6 - 0.9), and lactate (OR 1.2 per std, 95%CI 1.0 - 1.4).

Table 4.7: Univariate analysis of risk factors for ARDS in 789 patients without ARDS at the outset of
mechanical ventilation. Variables are listed in order of statistical significance (lowest to highest p-value).

Variable Mean Standard dev Odds ratio per STD p-value
(95% confidence interval)

PIP 30.7 8.5 cmH20 1.53 (1.28 - 1.84) < 0.001

Pplat 23.1 6.3 cmH20 1.54 (1.28 - 1.85) < 0.001
Weight 79 23.0 kg 1.39 (1.18 - 1.65) < 0.001
PEEP 5.9 2.2 cmH20O 1.35 (1.15 - 1.58) < 0.001
Sepsis - - 1.95 (1.31 - 2.88) < 0.001
VT 624.6 114.2 mL 1.36 (1.13 - 1.65) 0.001
Pneumonia - - 1.82 (1.22 - 2.69) 0.002
pH 7.4 0.1 pH 0.77 (0.65 - 0.91) 0.003
Lactate 2.8 2.4 mmol/L 1.19 (1.00 - 1.41) 0.044
Creatinine 1.2 1.2 mg/dL 1.14 (0.97 - 1.33) 0.110
Height 66.7 7.6 inches 1.22 (0.95 - 1.56) 0.120
Sex (if male) - - 1.32 (0.92 - 1.90) 0.126
Bicarbonate 23.5 5.4 mmol/L 0.88 (0.73 - 1.05) 0.158
Age 59.9 18.9 years 0.88 (0.74 - 1.05) 0.163
PaO2  118 46.1 mmHg 0.88 (0.73 - 1.06) 0.182
Crs 45.7 39.4 mL/cmH20 0.87 (0.70 - 1.08) 0.216
SAPS 9.2 2.9 SAPS 1.11 (0.93 - 1.33) 0.235
PaCO2  39.7 10.9 mmHg 1.09 (0.92 - 1.29) 0.342
VT/PBW 10.1 2.5 mL/kg 0.94 (0.76 - 1.16) 0.559
ALT 150.1 503.1 units/L 0.95 (0.75 - 1.19) 0.641
Respiratory Rate 21.4 6.2 bpm 0.97 (0.82 - 1.17) 0.779

SDT, standard deviation; PIP, peak inspiratory pressure; PpLat, plateau pressure; PEEP, positive end-expiratory pressure;
VT, tidal volume.; SAPS, simplified acute physiology score; PBW, predicted body weight.
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Variables that were not significant predictors of ARDS included patient age, sex, height, SAPS, VT/PBW

respiratory rate, PaO2 , PaCO2 , creatinine, bicarbonate, and C,s. These variables all had a p-value greater

than 0.05 in univariate analysis.

It is meaningful to visually examine the relationship between risk factors and subsequent development of

lung injury. Figure 4.6 shows the effects of differing day one plateau pressures; the percentage of patients

who develop ARDS increases from 10% to 30% as Pplat increases from 16 to 32 mmHg. PIP, a ventilator

setting known to be well correlated with plateau pressure, exhibits a similar trend as shown in Figure 4.7.
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Figure 4.6: Day one plateau pressure in 789 patients without ARDS at the outset of ventilation (top), and
the risk of developing ARDS as a function of Pplat (bottom).
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4.3 Development of Acute Respiratory Distress Syndrome (ARDS)
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Figure 4.7: Day one peak inspiratory pressure in 789 patients without ARDS at the outset of ventilation
(top), and the risk of developing ARDS as a function of PIP (bottom).

There is a more pronounced relationship between initial VT and development of ARDS (Figure 4.8) than
that associated with the development for ALI. Note that the tidal volume is set in intervals of 50 mL, and
the percentage of patients who acquire ARDS increases from 10% to 30% as VT increases from 450 to 800
mL. When examining PEEP, we see that most patients are given a PEEP of 5 cmH20, and the risk for
ARDS increases from 18% to 30% as PEEP increases from 5 to 10 cmH20 (Figure 4.9).

Two interesting physiologic predictors of ARDS were patient weight and arterial pH. The percent of patients
developing ARDS increases from 10% to 30% as patient weight increases from 50 to 100 kg, shown in Figure
4.10. The risk for ARDS increases from 10% to 30% as initial arterial pH decreases from 7.45 to 7.15,
however the risk is also high (near 40%) for values of pH above 7.53 (Figure 4.11).
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Figure 4.8: Day one tidal volume in 789 patients without ARDS at the outset of ventilation (top), and the
risk of developing ARDS as a function of VT (bottom).
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Figure 4.9: Day one positive end-expiratory pressure in 789 patients without ARDS at the outset of
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4.3 Development of Acute Respiratory Distress Syndrome (ARDS)
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Figure 4.10: Patient weight in 789 patients without ARDS at the outset of ventilation (top), and the risk
of developing ARDS as a function of weight (bottom).
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risk of developing ARDS as a function of pH (bottom).
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Results

4.3.2 Multivariate analysis of risk factors for ARDS

Variables found to be significantly associated with ARDS in univariate analysis (PIP, Pypat, weight, PEEP,

sepsis, VT, pneumonia, arterial pH, and lactate) were considered for the multivariate regression model. Sim-

ilar to the analysis for ALI, the optimal multivariate model was found by a forward-search and backward-

search on the significant variables. PaO2/FiO2 and SAPS were again added to control for severity of

illness. Both search methods produced a model that included PIP (odds ratio 1.35 per standard devia-

tion, p = 0.002), sepsis (OR 1.8, p = 0.005), VT (OR 1.27 per std, p = 0.015), and pH (OR 0.83 per std,

p = 0.053). This model, shown in Table 4.8, did not include VT/PBW.

One last multivariate model examined the relative importance of different ventilator settings as risk factors

for ARDS (Table 4.9): Ppiat, PEEP, VT, PIP, patient weight, PaO2/FiO2 , and SAPS. In this analysis,

Ppsat (OR 1.27 per std, p = 0.018) and PaO2/FiO2 (OR 0.64 per std, p < 0.001) remained significant

predictors while VT (OR 1.20 per std, p = 0.081), PEEP (OR 1.16, p = 0.083), and weight (OR 1.14, p =

0.195) did not. PIP correlated well with Pplat (R2 = 0.61, p < 0.001) and was not included in this model.

Table 4.8: Multivariate regression of risk factors for ARDS in 789 patients initially without ARDS. Optimal
model was achieved through forward and backward search of risk factors found in univariate analysis.

Mean Standard Dev Odds Ratio per STD p-value
(95% confidence interval)

PaO2 /FiO2  345.5 115.9 mmHg 0.62 (0.49 - 0.77) < 0.001
PIP 30.7 8.2 cmH20O 1.35 (1.12 - 1.62) 0.002
Sepsis - - 1.81 (1.20 - 2.70) 0.005

VT 623.5 111.9 mL 1.27 (1.05 - 1.55) 0.015
pH 7.4 0.1 pH 0.83 (0.70 - 1.00) 0.053
SAPS 9.2 2.9 score 1.11 (0.92 - 1.33) 0.291

SDT, standard deviation; SAPS, simplified acute physiology score. a Odds ratio calculated for presence of underlying illness.

Table 4.9: Multivariate analysis of ventilator-associated risk factors for ARDS in 789 patients without
ARDS at the outset. PaO2/FiO2 and weight were included to control for severity of illness.

Mean Standard Dev Odds Ratio per STD p-value
(95% confidence interval)

PaO2 /FiO2  345.5 115.9 mmHg 0.64 (0.51 - 0.80) < 0.001
Pplat 23.1 6.1 cmH20O 1.27 (1.04 - 1.54) 0.018
SAPS 9.2 2.9 score 1.18 (0.98 - 1.42) 0.076
VT 623.5 111.9 mL 1.20 (0.98 - 1.48) 0.081
PEEP 5.9 2.2 cmH20 1.16 (0.98 - 1.38) 0.083
Weight 79.0 22.4 kg 1.14 (0.94 - 1.38) 0.195

SDT, standard deviation; SAPS, simplified acute physiology score.
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Chapter 5

Discussion and Conclusions

5.1 Discussion

This retrospective cohort study sheds new light on the risk factors for ALI and ARDS in patients who were

mechanically ventilated for longer than 48 hours in the ICU. In 416 patients who had healthy lungs at the

outset, 120 (29%) later developed ALI. Of 789 patients with healthy or moderately injured lungs at the

outset, 152 (19%) developed ARDS. Several associations were found between day one ventilator settings

and new ALI/ARDS, suggesting that ventilator-associated lung injury may be a preventable illness in some

cases. However, the complexity of ARDS and the numerous physiologic risk factors make the disease rather

difficult to predict and treat in the ICU. The ventilator settings and physiologic variables associated with

new lung injury are discussed in the following sections.

5.1.1 Plateau pressure (Pptlt) and peak inspiratory pressure (PIP)

Ventilation with high airway pressure is an important risk factor for respiratory failure. In patients without

lung injury at the outset, high Pplat was significantly associated with the development of ALI in univariate

analysis (p < 0.001) as well as when adjusted for VT, PEEP, patient weight, PaO2/FiO 2 , sepsis, lactate,

and SAPS (p = 0.016). Similarly, high Pplat (and PIP) was significantly associated with ARDS (p <

0.001), even when controlled for VT, PEEP, patient weight, PaO2/FiO 2 , sepsis, SAPS, and pH (p =

0.018). Pplat is the most direct measurement of the pressures sustained by the lung alveoli. PIP and Pplat

were well correlated (R2 = 0.61), suggesting that a high PIP is likely to produce an elevated Pplat and

thus increases the chance for lung overdistention. These results suggest that Pplat and PIP are the most

critical ventilator-associated risk factors for the development of new ALI and ARDS.

5.1.2 Positive end-expiratory pressure (PEEP)

PEEP was not an important risk factor for ALI/ARDS, especially when examined in the presence of Pplat

and/or PIP. In patients with healthy lungs at the outset, PEEP was not significantly associated with
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the development of ALI (p = 0.151). In patients without ARDS at the outset, PEEP was associated new

ARDS in univariate analysis (p < 0.001). However, this relationship did not remain significant when it

was examined in the context of Pplat, PaO2/FiO 2, VT, SAPS, and weight (p = 0.926). In addition, PEEP

was not selected for the optimal multivariate model used to predict new ARDS (this model included

PIP, sepsis, VT, and arterial pH). These results suggest that high PEEP alone is not a risk factor for

ventilator-associated ALI or ARDS.

5.1.3 Tidal volume (VT) and normalized tidal volume (VT/PBW)

There are mixed results regarding tidal volume/normalized tidal volume and their associations with new

lung injury. The normalized tidal volume (VT/PBW) was not associated with development of ALI or ARDS

(p = 0.740 and p = 0.559 respectively) and was not considered for multivariate analysis. In addition, the

set tidal volume (VT) was not a risk factor for ALI in patients without lung injury at the outset (p = 0.265).

On the other hand, VT was a significant predictor of ARDS in univariate analysis (p < 0.001) and remained

significant in the optimal multivariate model that included PIP, PaO2/FiO2 , sepsis, pH, and SAPS (p =

0.015). This begs the question, "Why was tidal volume important in some cases and not in others?" The

answer partially lies in differences between the patients examined: the ARDS analysis used a larger group

of patients who, on average, had sicker lungs at the outset. A larger population increases the statistical

power of the analysis. In addition, patients with sicker lungs were more likely to develop further lung injury

and may have been ventilated at higher tidal volumes at the outset. The two factors combined may account

for the relationship between VT and development of ARDS. However, when we examine VT in the context

of Pplat, patient weight, PaO2/FiO 2, PEEP, and SAPS, this relationship loses significance (p = 0.081).

Overall, our results suggest that high tidal volume is associated with ARDS, but the relationship becomes

less significant when examined in the context of airway pressures and patient weight. This observation

shows the importance of analyzing variables in context of each other using multivariate methods. In this

study, high VT was found to be a significantly associated with ARDS but not ALI. Furthermore, tidal

volume was less important compared to Pplat and PIP as a risk factor for ARDS.

5.1.4 Results in context of established practice

The finding that ventilator pressures play a greater role in the development of ARDS than tidal volume is
supported by existing literature which emphasizes the adverse effects of high airway and transpulmonary

pressures [18, 32, 33, 34]. However, this finding also challenges the notion that high tidal volumes in the
presence of normal pressures can cause lung injury. Previous studies conclude that tidal volume is the most
important risk factor for development of ventilator-induced lung injury [23, 24]. However, these studies
did not include patient weight and airway pressure as continuous variables in their multivariate models.
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High PEEP was also associated with development of ARDS in univariate regression, but this association

loses significance in the presence of plateau pressure and PaO2 /FiO 2 . Thus it is likely that high PEEP is

associated with higher plateau pressures and is a marker of sicker patients. Historically, PEEP is thought

to be lung protective [11, 12] and is often used to recruit collapsed alveoli [35, 36]. However, the results of

this study do not point to the protective nature of PEEP.

5.1.5 Physiological risk factors

Physiological risk factors for new ARDS include patient obesity, blood acidemia, and high lactate. Obesity

decreases respiratory system compliance [37], so obese patients may require higher ventilator pressures

to deliver the same tidal volume. The data suggests that patient weight correlates somewhat with tidal

volume (R2 = 0.19, p < 0.001), and to a lesser extent with set peak inspiratory pressure (R2 = 0.05,

p < 0.001). Given this information, the exact relationship between weight, tidal volume, and airway

pressures remains difficult to discern clearly. In addition, obesity may increase the risk for ARDS through

metabolic/systemic effects rather than solely through mechanical effects on the respiratory system. An

important randomized clinical trial suggests that obesity may be lung-protective in some cases [10], but

our results do not support this hypothesis. Other physiologic risk factors such as low pH and high lactate

are characteristic of metabolic acidosis, a condition known to be predictive of acute lung injury in severely

traumatized patients [38]. Low pH and high lactate were associated with ARDS, but these associations

became less significant in the presence of low PaO2/FiO 2 , high Pplat, and high VT. This suggests that

the common practice of using the ventilator to correct for a metabolic acidosis is a potentially harmful

intervention if high airway pressures are required. Clinicians are beginning to use permissive hypercapnia

as a way to avoid high tidal volumes and high airway pressures in patients with ALI/ARDS [39].

5.1.6 Differences in the patient cohort for analysis of ALI and ARDS

When examining risk factors for the development of ALI and ARDS, we found the associations between

day 1 ventilator settings and new ARDS to have more statistical power (lower p-values) compared to those

associated with new ALI. For example, PEEP was a significant predictor of ARDS (p < 0.001) but not

of ALI (p = 0.151). There are two reasons for these observations. First, the number of patients in the

ARDS analysis (789) was larger than that in the ALI analysis (416). A larger group of patients gives more

statistical power to the ARDS analysis. Second, the ARDS analysis was based on patients who had sicker

lungs at outset of mechanical ventilation compared to that of the ALI analysis. These patients were likely

to be given higher tidal volumes/airway pressures and were also predisposed to developing further lung

injury. Both reasons contribute to the discrepancies observed between the two patient groups. However,

the idea that higher ventilator settings may be an indicator of sicker patients should be addressed by
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multivariate models that control for severity of lung and systemic illness.

5.1.7 Recognized limitations

There are several limitations in the current study. First, although data were validated at collection by the

bed-side nurses and respiratory therapists, they were not collected by scientific investigators and thus may

contain errors. The sheer size of the database should correct for such random errors, assuming inaccuracies

are random rather than systematic. Secondly, we assume random variability in initial ventilator settings,

but there always exists the possibility that higher pressures and tidal volumes were chosen deliberately

to correct underlying hypoxemia, acidemia, and non-cardiogenic pulmonary edema. Knowing this, we

have attempted to adjust for severity of illness by including PaO2 /FiO 2, SAPS, and other indicators

of underlying illness in the multivariate models. Thirdly, although we used a large patient population

in this study, data were not complete in all records. For example, height information was available in

60% of patients, preventing us from calculating tidal volume per predicted body weight for all patients.

Missing data reduces the statistical significance of univariate analyses and compels investigators to fill

in missing values for multivariate analyses. Finally, PaO2 /FiO 2 values were available only when arterial

blood gases were measured, and the accuracy of our patient classifications (no ARDS or ARDS at the

outset of ventilator therapy) depended on the presence and validity of these values. In general, any mis-

classification would bias towards the null hypothesis, making it more difficult to show a relationship between

initial ventilator settings and worsening gas exchange in the lungs. Future studies should use pulmonary

artery wedge pressure or biomarkers such as BNP in addition to PaO2 /FiO 2 values and chest x-ray reports

when diagnosing ARDS. Most importantly, a randomized trial is needed to verify the suggestion that high

ventilator pressures play a causal role in the development of ARDS.

5.2 Conclusions

Development of new onset ARDS is a relatively common complication in patients mechanically ventilated

> 48 hours in the ICU. High airway pressures, even more than tidal volumes per se, are the most important

ventilator-associated risk factors for the development of new ARDS. Thus it may be possible to reduce the

occurrence of ventilator-induced lung injuries with careful pressure management. However, randomized

prospective studies are needed to support this hypothesis. Several physiologic risk factors for ALI/ARDS

were identified: these included sepsis, pneumonia, low blood pH, high lactate, and patient obesity. The

results of this study contribute to the understanding of ventilator-associated lung injury and the ever

changing practice of patient care in the ICU.
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5.3 Recommendations for future research

5.3.1 Modifications in the current study

Several modifications of the current study are worth exploring. First, the oxygenation index has been

proposed as a better measure of gas exchange in patients who are mechanically ventilated. Thus, it may

be useful to identify the patients who have good gas exchange at the outset using this index rather than

the PaO2/FiO 2 ratio. Oxygenation index (OI) is defined as: defined as:

PaO2 [Mean airway pressure in cmH20] (5.1)
FiO2

Second, it is possible to perform a sensitivity analysis on criteria used to characterize the patient cohort.

For example, how would the classified groups change if patients were required to have 24hrs of healthy

gas exchange instead of 12hrs at the outset of mechanical ventilation? How would the results change

if we required the deterioration in gas exchange to last 48 hours instead of 24 hours? The data analysis

depends heavily on the initial grouping of patients, so it is important to understand how the cohort changes

according to inclusion and exclusion criteria.

5.3.2 Related clinical studies

Most groundbreaking studies examine the effects of clinical interventions on patient mortality. Thus, it

would be meaningful to study how day one ventilator settings are related to hospital mortality (i.e. use

mortality rather than development of ARDS as the primary outcome of interest). Our colleagues at BIDMC

also hypothesize that inflammation from injured lungs may spread to the systemic circulation if mechanical

ventilation is applied poorly. Thus it is possible to examine the relationship between day one ventilator

settings and the development of extra-pulmonary organ failure (such as renal failure).

5.3.3 Other studies using the MIMIC-II database

Many clinicians are interested in how ARDS management has changed since the publication of landmark

clinical trials. For example, a large ARDSnet trial showed that low tidal volume ventilation at 6 mL/kg

predicted body weight reduced mortality from 39% to 30% compared to traditional 12 mL/kg in patients

with ARDS [10]. An important task is to determine whether or not tidal volumes have decreased since

the study was published. The MIMIC-II database, which has collected ICU data from 2001 to 2005, is an

excellent source of this information. However, the de-identification and date-shifting of all patient records

may present a potential obstacle to this particular study.
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Appendix A

An Automated Radiology Report Reader

This appendix presents the design and evaluation of the algorithm used to extract information from chest

x-ray (text) reports. As described in Chapter 3, the diagnosis of ALI and ARDS depended on finding

evidence of bilateral infiltrates in these radiology reports. There were 305 patients with deteriorating gas

exchange after the onset of mechanical ventilation, and we needed to examine chest x-ray reports from

12hrs before to 72hrs after the drop in gas exchange for signs of ALI/ARDS. This results in approximately

3.5 reports per patient, which is a total of over 1,000 reports. For this reason, an algorithm was created

to help extract information from the text reports and aid in the diagnostic process. The following sections

describe the structure and design of the algorithm as well as its performance in a large annotated dataset.

Table A.1: Chest x-ray report for patient b62232 on May 20, 2014 at 12:10 am.
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Reason: r/o chf [**Signature 1**]

UNDERLYING MEDICAL CONDITION: 62 year old woman with

[**Doctor Last Name 148**]
REASON FOR THIS EXAMINATION: r/o chf [**Signature 1**]

FINAL REPORT

INDICATION: Subarachnoid hemorrhage. Rule out CHF.

COMPARISON: 7 hours earlier.

SINGLE VIEW CHEST: A left subclavian line and right subclavian line
are identified. One of the catheters terminates in the mid SVC and the
other in the lower SVC. There is no evidence for pneumothorax. There
is increased opacity of both lungs, greater on the right than on the left.
This may be consistent with pulmonary edema. There is no evidence
for congestive heart failure. No pleural effusions are present.

IMPRESSION: Findings consistent with pulmonary edema.



A.1 An example chest x-ray report

A.1 An example chest x-ray report

Table A.1 shows an x-ray report for a patient who developed ARDS after the onset of mechanical ventilation.

Each radiology report contains information such as the time of exam, the purpose of the exam, and clinical

interpretations from the radiologist. On average, x-rays were taken approximately once per day and reports

were recorded at the same rate. Note that this report was divided into multiple sections: underlying

conditions, reason for examination, findings, impression, etc. The clinical interpretation of the x-ray film

was included in sections entitled SINGLE VIEW CHEST, and IMPRESSION.

A.2 Algorithm design

Figure A.1 shows the main components of the text analysis algorithm. These components included (1) a re-

port parser, which reads the report and identifies sections that contain clinical interpretations/diagnoses;

(2) a search engine, which examines the relevant parts of the report for specific phrases (ex. opacities,

infiltrates); and (3) a logical interpreter that uses the results of the search engine to produce desired

outputs (ex. presence or absence of bilateral infiltrates). A key advantage of this algorithm is the ability to

change search phrases and output rules without altering the algorithm itself. The three main components

are further described in the following sections.

Search phrases: opacities, edema
Negations: no, no evidence
Locations: left, both lungs

Rules
(If infiltrates & bilateral Then ARDS)

I
-- report --.

sections

I

History...
Impressions...

--- search --*

results

pneumonia, left lung
edema, bilateral

-+ outputs and
findings

I

ARDS /PNEUM
ATELECTASIS

Figure A.1: A schematic of components in the text-analysis algorithm.
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An Automated Radiology Report Reader

A.2.1 The report parser

The report parser prepares a report for the search engine in the following manner. First, it removes extra

spaces from the beginning and end of each line. In the original report, these spaces were used as tabs to

align the report, possibly for printing purposes. Second, the parser identifies the beginning of each section

by looking for a colon (:) at the start of a paragraph. The text before the colon is used as the title of

the section, and finding a new colon terminates the previous section. For example, "COMPARISON: 7

hours earlier" would be considered one section with "COMPARISON" as the title. Third, the parser labels

sections that appear after "FINAL REPORT." This prevents the algorithm from searching in undesired

parts of the report, for example in the sections corresponding to past medical history (i.e. "UNDERLYING

MEDICAL CONDITION"). Table A.2 lists the sections and properties extracted from the example x-ray

report.

Table A.2: Report sections and properties for the example chest x-ray report.
Section title Part of "FINAL REPORT"
Reason no
UNDERLYING MEDICAL CONDITION no
REASON FOR THIS EXAMINATION no
INDICATION yes
COMPARISON yes
SINGLE VIEW CHEST yes
IMPRESSION yes

A.2.2 The search engine

The search engine is the core of the text analysis algorithm. It is responsible for finding specific phrases in

a report, identifying negations and locations associated with the phrase, and returning results to the logic

interpreter. The engine examines all parts of the radiology report that appear after "FINAL REPORT,"

excluding sections that describe previous illnesses ("UNDERLYING ILLNESS", "HISTORY", "INDICA-

TION", "ADMITTING", etc). For a given search phrase, the engine examines the report in the following

manner:

1. Determine if a section contains a the particular phrase via a normal linear search.

2. If the phrase is present, find the specific sentence that contains the phrase. Examine this sentence for:

* Negations, or words that indicate the item is not present (ex. "there is no evidence of edema"). A

list of negations was obtained from the NegEx algorithm, which was originally designed to extract

diseases from medical discharge summaries [40]. Two different word lists were used to identify
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negations before and after the search phrase; these lists are shown in Tables A.3 (post-phrase

negations) and A.4 (pre-phrase negations).

* Physical location, or location in the human body (ex. infiltrates are present in both lungs and

atelectasis is seen at the left base). A list of terms used to identify physical locations is shown in

Table A.5. The algorithm looked for words that describe physical location in the same sentence as

the search phrase.

* Phrase descriptions, or words that further characterize the disease (ex. there is a diffuse alveolar

pattern in the lungs). A list of search phrases and associated descriptions searched by the algorithm

is shown in Table A.6.

3. Return the search results to the logic interpreter for further processing. The process is then repeated

for other search phrases. In the example report, the algorithm found the following diseases: OPACITY:

both lungs, EFFUSIONS: no, and EDEMA: pulmonary.

Table A.3: Post-phrase negations, modified from NegEx [401
Negation terms
unlikely
free
was ruled out
is ruled out
are ruled out
have been ruled out
has been ruled out
is not present

- 67 -



An Automated Radiology Report Reader

Table A.4: Pre-phrase negations, modified from NegEx [40]

Negation terms
absence of
cannot
cannot see
checked for
declined
declines
denied
denies
denying
evaluate for
fails to reveal
free of
negative for
neither
never developed
never had
no
no abnormal
no cause of
no complaints of
no evidence
no new evidence
no other evidence
no evidence to suggest
no findings of
no findings to indicate
no mammographic evidence of
no new
no radiographic evidence of
no sign of
no significant
no signs of
no suggestion of
no suspicious
not
not appear
not appreciate
not associated with
not complain of
not demonstrate
not exhibit
not feel
not had

not have
not know of
not known to have
not reveal
not see
not to be
patient was not
rather than
resolved
test for
to exclude
unremarkable for
with no
without
without any evidence of
without evidence
without indication of
without sign of
rules out
rules him out
rules her out
rules the patient out
rules out for
rules him out for
rules her out for
rules the patient out for
ruled out
ruled him out
ruled her out
ruled the patient out
ruled out for
ruled him out for
ruled her out for
ruled the patient out for
ruled out against
ruled him out against
ruled her out against
ruled the patient out against
did rule out
did rule out for
did rule out against
did rule him out
did rule her out

did rule the patient out
did rule him out for
did rule her out for
did rule him out against
did rule her out against
did rule the patient out for
did rule the patient out against
can rule out
can rule out for
can rule out against
can rule him out
can rule her out
can rule the patient out
can rule him out for
can rule her out for
can rule the patient out for
can rule him out against
can rule her out against
can rule the patient out against
adequate to rule out
adequate to rule him out
adequate to rule her out
adequate to rule the patient out
adequate to rule out for
adequate to rule him out for
adequate to rule her out for
adequate to rule the patient out for
adequate to rule the patient out against
sufficient to rule out
sufficient to rule him out
sufficient to rule her out
sufficient to rule the patient out
sufficient to rule out for
sufficient to rule him out for
sufficient to rule her out for
sufficient to rule the patient out for
sufficient to rule out against
sufficient to rule him out against
sufficient to rule her out against
sufficient to rule the patient out against
resolution of
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Table A.5: Terms that describe physical location in the lungs
Location Terms
Both lungs bilateral, bilaterally, bibasilar, bilat, both lungs,

perihilar, multifocal, both lobes, both lung
zones, both apices, both bases, lower lung zones,
upper lung zones

Left lung left, retrocardiac, behind the heart, lingula

Right lung right

Left or right lung asymmetric, hemithorax

Not in lungs abdomen, artery, breast

Table A.6: Phrases and associated descriptions searched by the text analysis algorithm.
Phrases Descriptions
respiratory distress, rds, ards
pneumonia
atelectasis, atelectases, atelectatic
collapse
effusion(s) pleural
fluid pleural
consolidation(s) diffuse, hazy, patchy, opaque
disease diffuse, hazy, patchy, opaque
infiltrate(s) diffuse, hazy, patchy, opaque
density(ies) diffuse, hazy, patchy, opaque
alveolar pattern diffuse, hazy, patchy, opaque
fullness diffuse, hazy, patchy, opaque
haziness, haze diffuse, patchy, opaque
opacity(ies), opacified, opacification(s) diffuse, hazy, patchy
edema pulmonary, pulm, interstitial
lung(s) inflammatory, inflammation, inflammed, clear
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A.2.3 The logical interpreter

The logical interpreter examines the output of the search engine and makes diagnoses based on a list of

rules. An example rule is: if both bilateral and infiltrates are present, mark the patient as having bilateral

infiltrates. The logical interpreter loads the set of rules from an easily manipulated medium, such as a text

file. It then examines the results returned by the search engine to see if any rules are satisfied. If so, the

appropriate diagnoses are recorded. The list of rules used by the interpreter is shown in Tables A.7 and

A.8. In the example report, the patient was identified as having BILAT-INFILTRATES.

Table A.7: Rules used to extract findings from search results
Finding Criteria
infiltrates ARDS, inflammation, inflammatory, inflammed, pneumonia, patchy, infil-

trate(s), density(ies), edema, hazy(iness), opacity(ies), opacification, opacified,
respiratory distress, diffuse, or fullness

atelectasis atelectasis, atelectases, atelectatic, collapse, consolidation, or consolidations
effusion effusion(s)
clear clear

bilateral bilateral(ly), bibasilar, apices, bases, lower lung zones, or upper lung zones
bilateral both + (lung zones, lobes, lungs, apices, or bases)
bilateral left + right
bilateral NOT (left or right) + (perihilar, multifocal, interstitial, pulmonary, pulm)
right right
left left, retrocardiac, behind the heart
lungs NOT (abdomen, artery, or breast)

A.3 Algorithm performance

The text analysis algorithm was evaluated by a manual review of chest x-ray reports in 305 patients with

deteriorating gas exchange. A preliminary version of the algorithm was used to detect bilateral infiltrates

and atelectasis/consolidations in these patients. In patients where bilateral disease was found, one report

that contained the diagnosis was selected and examined manually. In all other patients, reports from 12hrs

before the drop in gas exchange to 72hrs after were reviewed. In total, 641 reports were examined for

the presence of infiltrates, atelectasis, pleural effusions, and clear lungs. Distinctions were made between

diseases present in the left, right, or bilateral lungs. If a particular disease was present in both the left and

right lungs, it was considered a bilateral disease. Table A.9 shows the incidence of each disease in this gold

standard of 641 annotated reports.

The output of the text-analysis algorithm was then compared to the gold standard. The sensitivity, positive
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Table A.8: Rules used to extract DIAGNOSES from findings
Diagnosis
BILAT-INFILTRATES
L-INFILTRATES
R-INFILTRATES
INFILTRATES

BILAT-ATELECTASIS
L-ATELECTASIS
R-ATELECTASIS
ATELECTASIS

BILAT-EFFUSION
L-EFFUSION
R-EFFUSION
EFFUSION

BILAT-CLEAR
L-CLEAR
R-CLEAR
CLEAR

Finding 1
infiltrates
infiltrates
infiltrates
infiltrates

atelectasis
atelectasis
atelectasis
atelectasis

effusion
effusion
effusion
effusion

clear
clear
clear
clear

Finding 2
bilateral
left
right
NOT (left,

bilateral
left
right
NOT (left,

bilateral
left
right
NOT (left,

bilateral
left
right
NOT (left,

right, or bilateral

right, or bilateral)

right, or bilateral)

right, or bilateral)

Finding 3
lungs
lungs
lungs

) lungs

lungs
lungs
lungs
lungs

lungs
lungs
lungs
lungs

lungs
lungs
lungs
lungs

Table A.9: Findings from a manual review of 641 reports.
Bilateral lungs Left lung Right lung Not present

Infiltrates 256 89 41 255
Atelectasis 162 168 42 269
Effusions 154 89 58 340
Clear 31 8 17 585
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predictive value (PPV), and accuracy was calculated for each disease. The definitions for sensitivity, PPV,

and accuracy are the follows:

S #true positives
Sensitivity =

#true positives + #false negatives

#true positives
Positive predictive value =

#true positives + #false positives

Accuracy = #true positives + #true negatives
Accuracy =

#total records

In this thesis, a true positive was defined as a correct prediction of a disease or characteristic that was also

associated with the correct part of the lungs. A false positive was a positive prediction that did not result

in a true positive. False negatives and true negatives assume their normal definitions. The performance of

the algorithm in terms of sensitivity, PPV, and accuracy are listed in Table A.10.

Table A.10: Performance of the radiology report analysis algorithm.
Infiltrates Atelectasis Effusions Clear

n (out of 641) 386 372 301 56
Sensitivity 0.98 0.98 0.98 0.96
PPV 0.95 0.92 0.95 0.98
Accuracy 0.96 0.94 0.97 0.996

In general, the algorithm had high sensitivity (> 0.97), high positive predictive value (> 0.92), and high

accuracy (> 0.94) among the different types of diseases/characteristics extracted. The differences between

the gold standard and the algorithm predictions were reviewed, and the following observations were made.

First, the algorithm was in general more accurate than the human reader because it could systematically

identify every instance of the disease. Second, the most common error made by the algorithm was the

inability to differentiate between multiple physical locations in the same sentence. For example, "there are

infiltrates in the left and effusions in the right lung," was interpreted as bilateral infiltrates and bilateral

effusions. Addressing this issue is non-trivial and may be part of future work that expand on the current

algorithm.

The automated text analysis algorithm runs fairly quickly: it can evaluate reports at 1,000 patients per

minute (where each patient has on the order of 10 reports). At its current speed and accuracy, it may prove

a useful tool for identifying patients from the MIMIC-II database who have specific respiratory diseases.

However, a manual review of the identified patients is still recommended to ensure correct diagnoses.
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A.4 Algorithm code

The "RadiologyReader" package was build using Netbeans IDE 5.5 and Java 1.5. The list of java classes

that make up this package are shown and described in Table A.11.

Table A.11: Source files from the RadiologyReader Package
File Description
Main.java main class to run RadiologyReader
RadiologyParser.java parses a radiology report into sections
RadiologySearchEngine.java main search engine component of the algorithm
RadiologyWriter.java writes the findings/diagnoses to a text file
RadiologyFinding.java class for one particular finding/diagnoses
RadiologyFindings.java class for a set of findings/diagnoses
ReportList.java class for a list of radiology reports
ReportSection.java class for a particular section of the radiology report
Rule.java class for a particular rule used in by logical interpreter
RuleReader.java reads user-written rules from a text file
SearchResult.java class for the result of an algorithm search
SearchResults.java class for a list of results returned by the search
SearchTerm.java class to contain a searched phrase and modifier terms
SingleReport.java class for one radiology report
WordList.java container of a list of words used by the algorithm
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