
Free Text Phrase Encoding and Information

Extraction from Medical Notes

by

Jennifer Shu

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science
August 16, 2005

Certified by. .
Roger G. Mark

Distinguished Professor in Health Sciences & Technology
Thesis Supervisor

Certified by. .
Peter Szolovits

Professor of Computer Science
Thesis Supervisor

Accepted by .

Arthur C. Smith
Chairman, Department Committee on Graduate Students

2

Free Text Phrase Encoding and Information Extraction from

Medical Notes

by

Jennifer Shu

Submitted to the Department of Electrical Engineering and Computer Science
on August 16, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The Laboratory for Computational Physiology is collecting a large database of pa-
tient signals and clinical data from critically ill patients in hospital intensive care units
(ICUs). The data will be used as a research resource to support the development of
an advanced patient monitoring system for ICUs. Important pathophysiologic events
in the patient data streams must be recognized and annotated by expert clinicians
in order to create a “gold standard” database for training and evaluating automated
monitoring systems. Annotating the database requires, among other things, analyz-
ing and extracting important clinical information from textual patient data such as
nursing admission and progress notes, and using the data to define and document
important clinical events during the patient’s ICU stay. Two major text-related an-
notation issues are addressed in this research. First, the documented clinical events
must be described in a standardized vocabulary suitable for machine analysis. Second,
an advanced monitoring system would need an automated way to extract meaning
from the nursing notes, as part of its decision-making process. The thesis presents and
evaluates methods to code significant clinical events into standardized terminology
and to automatically extract significant information from free-text medical notes.

Thesis Supervisor: Roger G. Mark
Title: Distinguished Professor in Health Sciences & Technology

Thesis Supervisor: Peter Szolovits
Title: Professor of Computer Science

3

4

Acknowledgments

I would like to thank my two thesis advisors, Dr. Mark and Prof. Szolovits, for all

their help with my thesis, Gari and Bill for their guidance and support, Margaret

for providing the de-identified nursing notes and helping with part of speech tagging,

Neha for helping with the graph search algorithm, Tin for his help with testing, Ozlem

and Tawanda for their advice, and Gari, Bill, Andrew, Brian, and Dr. Mark for all

their hard work tagging data for me. This research was funded by Grant Number

R01 EB001659 from the National Institute of Biomedical Imaging and Bioengineering

(NIBIB).

5

6

Contents

1 Introduction 13

1.1 The MIMIC II Database . 14

1.2 Annotation Process . 15

1.3 Medical Vocabulary . 15

1.4 Free-Text Coding . 16

1.5 Extraction of Significant Concepts from Notes 17

1.6 Related Work . 18

1.7 Thesis Outline . 20

2 Automatic Coding of Free-Text Clinical Phrases 21

2.1 SNOMED-CT Vocabulary . 22

2.2 Resources Used . 23

2.2.1 Medical Abbreviations . 23

2.2.2 Custom Abbreviations . 23

2.2.3 Normalized Phrase Tables . 24

2.2.4 Spell Checker . 26

2.3 Search Procedure . 27

2.4 Configuration Options . 32

2.4.1 Spell Checking . 32

2.4.2 Concept Detail . 33

2.4.3 Strictness . 33

2.4.4 Cache . 33

2.5 User Interface . 34

7

2.6 Algorithm Testing and Results . 36

2.6.1 Testing Method . 36

2.6.2 Results . 37

2.6.3 Discussion . 40

3 Development of a Training Corpus 45

3.1 Description of Nursing Notes . 45

3.2 Defining a Semantic Tagset . 46

3.3 Initial Tagging of Corpus . 47

3.3.1 Tokenization . 48

3.3.2 Best Coverage . 49

3.4 Manual Correction of Initial Tagging 54

3.5 Results . 55

3.6 Discussion and Improvement of Corpus 56

4 Automatic Extraction of Phrases from Nursing Notes 61

4.1 Approaches . 62

4.2 System Setup . 63

4.2.1 Syntactic Data . 63

4.2.2 Statistical Data . 66

4.2.3 Semantic Lexicon . 68

4.3 Statistical Extraction Methods . 69

4.3.1 Forward-Based Algorithm . 70

4.3.2 Best Path Algorithm . 73

4.4 Testing and Results . 75

4.5 Discussion . 77

5 Conclusions and Future Work 81

A Sample Re-identified Nursing Notes 83

B UMLS to Penn Treebank Tag Translation 85

8

List of Figures

2-1 Flow Chart of Coding Process . 27

2-2 Coding Screenshot . 34

2-3 Timing Results for Coding Algorithm 39

3-1 Graph Node Creation . 50

3-2 Graph Search Algorithm . 52

3-3 Manual Correction Screenshot . 54

4-1 Forward Statistical Algorithm . 70

4-2 Best Path Statistical Algorithm . 74

4-3 Best Path Algorithm Code . 75

9

10

List of Tables

2.1 INDEXED NSTR . 25

2.2 INVERTED NSTR . 26

2.3 Normalization Example - INVERTED NSTR 30

2.4 Normalization Example - Row to Words Mapping 30

2.5 Normalization Example - Final Row and Concept Candidates 31

2.6 Coding Results Summary . 37

3.1 Semantic Groupings . 47

3.2 Graph Search Example . 53

3.3 Gold Standard Results . 56

3.4 New Gold Standard Results . 58

4.1 TAGS Table . 67

4.2 BIGRAMS Table . 67

4.3 TRIGRAMS Table . 68

4.4 TETRAGRAMS Table . 68

4.5 Phrase Extraction Results - Forward Algorithm 76

4.6 Phrase Extraction Results - Best Path Algorithm 77

B.1 UMLS to Penn Treebank Translation 85

11

12

Chapter 1

Introduction

The MIT Laboratory for Computational Physiology (LCP) and the MIT Clinical

Decision Making Group are involved in a research effort to develop an advanced

patient monitoring system for hospital intensive care units (ICUs). The long-term

goal of the project is to construct an algorithm that can automatically extract meaning

from a patient’s collected clinical data, allowing clinicians to easily define and track

the patient’s physiologic state as a function of time. To achieve this goal, a massive,

comprehensive multi-parameter database of collected patient signals and associated

clinical data, MIMIC II [38, 29], is being assembled and needs to be annotated [8].

The database, once annotated, will serve as a testbed for multi-parameter algorithms

that will be used to automate parts of the clinical care process.

This thesis deals specifically with two text-related facets of annotation. First,

during the annotation of data, clinicians enter a free-text phrase to describe what

they believe are significant clinical events (e.g., cardiogenic shock, pulmonary edema,

or hypotension) in a patient’s course. In order for the descriptions to be available

in a standardized format for later machine analysis, and at the same time to allow

the annotators to have expressive freedom, there must exist a method to code their

free-text descriptions into an extensive standardized vocabulary. This thesis presents

and evaluates an algorithm to code unstructured descriptions of clinical concepts into

a structured format. This thesis also presents an automated method of extracting

important information from available free text data, such as nursing admission and

13

progress notes. Automatic extraction and coding of text not only accelerate expert

annotation of a patient’s medical data, but also may aid online hypothesis construc-

tion and patient course prediction, thus improving patient care and possibly improv-

ing outcomes. Important information that needs to be extracted from the nursing

progress notes includes the patient’s diagnoses, symptoms, medications, treatments,

and laboratory tests. The extracted medical concepts may then be translated into

a standardized medical terminology with the help of the coding algorithm. To test

the performance of various extraction algorithms, a set of clinical nursing notes was

manually tagged with three different phrase types (medications, diseases, and symp-

toms) and then used as a “gold standard” corpus to train statistical semantic tagging

methods.

1.1 The MIMIC II Database

The MIMIC II database includes physiologic signals, laboratory tests, nursing flow

charts, clinical progress notes, and other data collected from patients in the ICUs

of the Beth Israel Deaconess Medical Center (BIDMC). Expert clinicians are cur-

rently reviewing each case and annotating clinically significant events, which include,

but are not limited to, diseases (e.g., gastrointestinal bleed, septic shock, or hemor-

rhage), symptoms (e.g., chest pain or nausea), significant medication changes, vital

sign changes (e.g., tachycardia or hypotension), waveform abnormalities (e.g., ar-

rhythmias or ST elevation), and abnormal laboratory values. The annotations will be

used to train and test future algorithms that automatically detect significant clinical

events, given a patient’s recorded data.

The nursing admission and progress notes used in this research are typed in free

text (i.e., natural language without a well-defined formal structure) by the nurses

at the end of each shift. The notes contain such information as symptoms, physical

findings, procedures performed, medications and dosages given to the patient, inter-

pretations of laboratory test results, and social and medical history. While some other

hospitals currently use structured input (such as dropdown lists and checkboxes) to

14

enter clinical notes, the BIDMC currently uses a free-text computer entry system

to record nursing notes. There are both advantages and disadvantages of using a

free-text system. Although having more structured input for nursing notes would

facilitate subsequent machine analysis of the notes, it is often convenient for nurses

to be able to type patient notes in free text instead of being constrained to using a

formal vocabulary or structure. Detail may also be lost when nurses are limited to

using pre-selected lists to describe patient progress.

1.2 Annotation Process

During the process of annotating the database, annotators review a patient’s dis-

charge summary, progress notes, time series of vital signs, laboratory tests, fluid

balance, medications, and other data, along with waveforms collected from beside

monitors, and mark what they believe to be the points on the timeline where signif-

icant clinical events occur. At each of those important points in the timeline, they

attach a state annotation, labeled with a description of the patient’s state (e.g., my-

ocardial infarction). The annotators also attach to each state annotation one or more

flag annotations, each of which is a piece of evidence (e.g., chest pain or shortness of

breath) that supports the state annotation. See [8, 9] for a fuller description of the

Annotation Station and the annotation process. An algorithm was developed to code

each of the state and flag annotation labels with one or more clinical concepts. The

aim is to eventually create an annotated database of patient data where each of the

state annotations and flag annotations is labeled with a clinical concept code.

1.3 Medical Vocabulary

Free-text coding is needed to translate the free-text descriptions or phrases into codes

from a medical vocabulary, providing a standardized way of describing the clinical

concepts. The medical vocabulary that is being used for annotating MIMIC II data is

a subset of the 2004AA version of the National Library of Medicine’s Unified Medical

15

Language System (UMLS) [33], a freely available collection of over one hundred med-

ical vocabularies that identify diseases, symptoms, and other clinical concepts. Each

unique clinical concept is assigned a concept code (a unique alpha-numeric identifier),

and the concept generally has several different synonyms. For example, heart attack

and myocardial infarction represent the same concept, and both strings are mapped

to the same unique UMLS concept code.

The UMLS was designed to help facilitate the development of automated com-

puter programs that can understand clinical text [31], and its knowledge sources are

widely used in biomedical and health-related research. In addition to the informa-

tion included in all of the source vocabularies (referred to as the Metathesaurus),

the UMLS contains additional semantic and syntactic information to aid in natural

language processing (NLP). The SPECIALIST Lexicon is a collection of syntactic,

morphological, and orthographic information for commonly used English and medical

terms. It includes commonly used abbreviations and spelling variants for words, as

well as their parts of speech. The Semantic Network categorizes each concept and

links multiple concepts together through various types of relationships [33, 25].

1.4 Free-Text Coding

The free-text coding component of this research focuses on the development of an

interactive algorithm that converts free-text descriptions or phrases into one or more

UMLS codes. A graphical user interface has been developed to incorporate this algo-

rithm into the annotation software [9]. The program is invoked when an annotation

label needs to be coded, thereby making the MIMIC II annotations useful for later

machine analysis.

There are several challenges to translating free-text phrases into standardized ter-

minology. The search for concept codes must be accurate and rapid enough that an-

notators do not lose patience. Annotators are also prone to making spelling mistakes

and often use abbreviations that may have more than one meaning. Furthermore,

the same UMLS concept may be described in various different ways, or annotators

16

might wish to code a concept that simply does not exist in the UMLS. Sometimes the

annotator might not be satisfied with the level of specificity of codes returned and

may want to look at related concepts. These issues are addressed and comparisons of

accuracy and search times are made for a variety of medical phrases.

1.5 Extraction of Significant Concepts from Notes

As the other main component of this research, algorithms were developed to automat-

ically find a subset of significant phrases in a nursing note. Such algorithms will be a

part of the long-term plan to have a machine use collected patient data to automati-

cally make inferences about the patient’s physiologic state over time. Given a progress

note as input, these algorithms output a list of the patient’s diagnoses, symptoms,

medications, treatments, and tests, which may further be coded into UMLS concepts

using the free text phrase encoding algorithm.

Unstructured nursing notes are difficult to parse and analyze using automatic

algorithms because they often contain spelling errors and improper grammar and

punctuation, as well as many medical and non-medical abbreviations. Furthermore,

nurses have different writing habits and may use their own abbreviations and format-

ting. Natural language analysis can be helpful in creating a method to automatically

find places in the notes where important or relevant medical information is most likely

to exist. For example, rule-based or statistical tagging methods can be used to assign

a part of speech (e.g., noun or verb) or other type of categorization (e.g., disease or

symptom) to each word in a text. The tagged words can then be grouped together to

form larger structures, such as noun phrases or semantic phrases. Tagging a repre-

sentative group of texts, and then forming new grammatical or semantic assumptions

from them (e.g., a disease is most likely to be a noun phrase, or a medication is most

likely preceded by a number), helps to identify places in the text that contain words

of interest. Such methods are explored and evaluated in this research.

17

1.6 Related Work

Over the past several decades, many projects have been undertaken in the biomedi-

cal and natural language communities to analyze medical notes and extract meaning

from them using computers. One such project is the Medical Language Extrac-

tion and Encoding System (MedLEE) [16, 14, 15], created by Carol Friedman at

Columbia University. The system uses natural language processing to extract clinical

information from unstructured clinical documents, and then structures and encodes

the information into a standardized terminology. Although MedLEE is designed for

specific types of medical documents, such as discharge summaries, radiology reports,

and mammography reports, the current online demo version [30] generally performs

well on the BIDMC nursing notes. It is able to extract phrases such as problems,

medications, and procedures, along with their UMLS codes. However, it does make

some mistakes, such as not recognizing certain abbreviations (e.g., “CP” for chest

pain, “pulm” for pulmonary, and “levo,” which can stand for a number of differ-

ent drug names). The system also gives some anomalous results, such as the word

“drinks” in the sentence “eating full diet and supplemental drinks” being coded into a

problem, drinks alone. Furthermore, the demo version of MedLEE does not recognize

words that have spelling errors. Although the system can be run via a web interface,

the source code for their tools is not readily accessible, nor is the most recent and

comprehensive version of MedLEE available online.

Another relevant project is Naomi Sager’s Linguistic String Project, the goal of

which is to use natural language processing to analyze various types of texts, includ-

ing medical notes. The group has done work in defining sublanguage grammars to

characterize free-text medical documents and using them to extract the information

from the documents into a structured database [39]. However, their source code is

also not currently available.

The Link Grammar Parser [26] is another such tool that attempts to assign syntac-

tic structure to sentences, although it was not designed specifically to analyze medical

notes. The parser uses a lexicon and grammar rules to assign parts of speech to words

18

in a sentence and syntactic structure to the phrases in the sentence. However, cur-

rently, the parser’s grammatical rules are too strict and cannot handle phrases or

“ungrammatical” sentences such as those in the nursing notes. Some work has been

done to expand the Link Parser to work with medical notes [41, 12]; however, the use

of a medical lexicon was not found to significantly improve the performance of the

parser.

Zou’s IndexFinder [7] is a program designed to quickly retrieve potential UMLS

codes from free text phrases and sentences. It uses in-memory tables to quickly index

concepts based on their normalized string representations and the number of words in

the normalized phrase. The authors argue that IndexFinder is able to find a greater

number of specific concepts and perform faster than NLP-based approaches, because

it does not limit itself to noun phrases and does not have the high overhead of NLP

approaches. IndexFinder is available in the form of a web interface [2] that allows

users to enter free text and apply various types of semantic and syntactic filtering.

Although IndexFinder is very fast, its shortcomings, such as missing some common

nursing abbreviations such as “mi” and not correcting spelling mistakes, are similar

to those of MedLEE. As of this writing, their source code was not publicly available.

However, IndexFinder’s approaches are useful for efficient coding and are explored in

this research.

The National Library of Medicine has various open source UMLS coding tools

available that perform natural language processing and part-of-speech tagging [25].

Although some of these tools are still in development and have not been released, the

tools that are available may be helpful in both coding free text and analyzing nursing

notes. MetaMap Transfer (MMTx) [3, 10] is a suite of software tools that the NLM has

created to help parse text into phrases and code the phrases into the UMLS concepts

that best cover the text. MetaMap has some problems similar to those of previously

mentioned applications, in that it does not recognize many nursing abbreviations and

by default does not spell check words. Nevertheless, because the tools are both free

and open source, and are accessible through a Java API, it is easy to adapt their tools

and integrate them into other programs. MetaMap and other NLM tools are utilized

19

in this research and their performance is evaluated.

The Clinical Decision Making Group has projects in progress to automatically

extract various types of information from both nursing notes and more formally-

written discharge summaries [27]. Currently, some methods have been developed for

tokenizing and recognizing sections of the nursing notes using pattern matching and

UMLS resources. Additionally, algorithms have been developed to extract diagnoses

and procedures from discharge summaries. This thesis is intended to contribute to

the work being done in these projects.

1.7 Thesis Outline

In this thesis, a semi-automated coding technique, along with its user interface, is

presented. The coding algorithm makes use of abbreviation lists and spelling dictio-

naries, and proceeds through several stages of searching in order to present the most

likely UMLS concepts to the user. Additionally, different methodologies for medical

phrase extraction are compared. In order to create a gold standard corpus to be used

to train and test statistical algorithms, an exhaustive search method was first used to

initially tag diseases, medications, and symptoms in a corpus of nursing notes. Then,

several people manually made any necessary corrections to the tags, creating a gold

standard corpus that was used for training and testing. The clinical phrases were then

extracted using the statistical training data and a medical lexicon. Comparisons are

made between the exhaustive search method, automated method, and gold standard.

Chapter 2 presents and evaluates an algorithm for coding free-text phrases into a

standardized terminology. Chapter 3 details the creation of the gold standard corpus

of tagged nursing notes, and Chapter 4 describes methods to automatically extract

significant clinical terms from the notes. Finally, conclusions and future work are

presented in Chapter 5.

20

Chapter 2

Automatic Coding of Free-Text

Clinical Phrases

A method of coding free-text clinical phrases was developed both to help in labelling

MIMIC II annotations and to be used as a general resource for coding medical free

text. The system can be run both through a graphical user interface and through

a command-line interface. The graphical version of the coding application has been

integrated into the Annotation Station software [9], and it can also be run standalone.

Additionally, the algorithm can be run via an interactive command-line interface, or

it can be imbedded into other software applications (for example, to perform batch

encoding of text without manual intervention).

As outlined in the previous chapter, there are many difficulties that occur in the

process of coding free-text phrases, including spelling mistakes, ambiguous abbrevia-

tions, and combinations of events that cannot be described with a single UMLS code.

Furthermore, because annotators will spend many hours analyzing and annotating

the data from each patient, the free-text coding stage must not be a bottleneck; it

is desirable that the retrieval of code candidates not take more than a few seconds.

Results should be returned on the first try if possible, with the more relevant results

at the top. The following sections describe the search procedure and resources used

in the coding algorithm, as well as the user interface for the application that has been

developed.

21

2.1 SNOMED-CT Vocabulary

The medical terminology used for coding MIMIC II annotations was limited to

the subset of the UMLS containing the SNOMED-CT [18, 19] source vocabulary.

SNOMED-CT is a hierarchical medical nomenclature formed by merging the College

of American Pathologists’ Systematized Nomenclature of Medicine (SNOMED) with

the UK National Health Service’s Read Clinical Terms (CT). SNOMED-CT contains

a collection of concepts, descriptions, and relationships and is rapidly becoming an

international standard for coding medical concepts. Each concept in the vocabu-

lary represents a clinical concept, such as a disease, symptom, intervention, or body

part. Each unique concept is assigned a unique numeric identifier or code, and can be

described by one or more terms or synonyms. In addition, there are many types of re-

lationships that link the different concepts, including hierarchical (is-a) relationships

and attribute relationships (such as a body part being the finding site of a certain

disease). Because of the comprehensiveness and widespread use of the SNOMED-CT

vocabulary in the international healthcare industry, this terminology was chosen to

represent the MIMIC II annotation labels.

The 2004AA version of the UMLS contains over 1 million distinct concepts, with

over 277,000 of these concepts coming from the SNOMED-CT (January 2004) source

vocabulary. The UMLS captures all of the information contained in SNOMED-CT,

but is stored within a different database structure. The NLM has mapped each of the

unique SNOMED-CT concept identifiers into a corresponding UMLS code. Because

the free-text coding application presented in this research was designed to work with

the UMLS database structure, other UMLS source vocabularies (or even the entire

UMLS) can be substituted for the SNOMED-CT subset without needing to modify

the application’s source code.

22

2.2 Resources Used

The Java-based application that has been developed encodes significant clinical events

by retrieving the clinical concepts that most closely match a free-text input phrase.

To address the common coding issues mentioned above, the system makes use of an

open-source spell-checker, a large list of commonly used medical abbreviations, and a

custom abbreviation list, as well as normalized word tables created from UMLS data.

This section describes these features in detail.

2.2.1 Medical Abbreviations

One of the most obvious difficulties with trying to match a free text phrase with

terms from a standardized vocabulary is that users tend to use shorthand or abbre-

viations to save time typing. It is often difficult to figure out what an abbreviation

stands for because it is either ambiguous or does not exist in the knowledge base. The

UMLS contains a table of abbreviations and acronyms and their expansions [32], but

the table is not adequate for a clinical event coding algorithm because it lacks many

abbreviations that an annotator might use, and at the same time contains many ir-

relevant (non-medical) abbreviations. Therefore, a new abbreviation list was created

by merging the UMLS abbreviations with an open source list of pathology abbrevi-

ations and acronyms [11], and then manually filtering the list to remove redundant

abbreviations (i.e., ones with expansions consisting of variants of the same words)

and abbreviations that would likely not be crucial to the meaning of a nursing note

(e.g., names of societies and associations or complex chemical and bacteria names).

The final list is a text file containing the abbreviations and their expansions.

2.2.2 Custom Abbreviations

When reviewing a patient’s medical record, annotators often wish to code the same

clinical concept multiple times. Thus, a feature was added to give users the option to

link a free-text term, phrase, or abbreviation directly to one or more UMLS concept

codes, which are saved in a text file and available in later concept searches. For

23

example, the annotator can link the abbreviation mi to the concept code C1, the

identifier for myocardial infarction. On a subsequent attempt to code mi, the custom

abbreviation list is consulted, and myocardial infarction is guaranteed to be one of

the top concepts returned. The user can also link a phrase such as tan sxns to both

tan and secretions. This feature also addresses the fact that the common medical

abbreviation list sometimes does not contain abbreviations that annotators use.

2.2.3 Normalized Phrase Tables

Many coding algorithms convert free-text input phrases into their normalized forms

before searching for the words in a terminology database. The NLM Lexical Systems

Group’s [22] Norm [23] tool (which is included in the Lexical Tools package) is a

configurable program with a Java API that takes a text string and translates it to

a normalized form. It is used by the NLM to generate the UMLS normalized string

table, MRXNS ENG. The program removes genitives, punctuation, stop words, and

diacritics, splits ligatures, converts all words to lowercase, uninflects the words, ignores

spelling variants (e.g., color and colour are both normalized to color), and alphabetizes

the words [23]. A stop word is defined as a frequently occurring word that does not

contribute much to the meaning of a sentence. The default stop words that are

removed by the Norm program are of, and, with, for, nos, to, in, by, on, the, and (non

mesh).

Normalization is useful in free-text coding programs because of the many different

forms that words and phrases can take on. For example, lower leg swelling can also

be expressed as swelling of the lower legs and swollen lower legs. Normalizing any of

those phrases would create a phrase such as leg low swell, which can then be searched

for in MRXNS ENG, which consists of all UMLS concepts in normalized form. A

problem with searching for a phrase in the normalized string table, however, is that

sometimes only part of the phrase will exist as a concept in the UMLS. Thus, to

search for all partial matches of leg low swell, up to 7 different searches might have

to be performed (leg low swell, leg low, low swell, leg swell, leg, low, and swell). In

general, for a phrase of n words, 2n − 1 searches would have to be performed.

24

Table 2.1: The structure of the INDEXED NSTR table, which contains all of the
unique normalized strings from the UMLS MRXNS ENG table, sorted by the number
of words in each phrase and each row given a unique row identifier.

row id cuis nstr numwords

132 C7 leg 1
224 C1,C2,C3 low 1
301 C4,C5 swell 1
631 C7 leg low 2
632 C6 leg swell 2
789 C8 leg low swell 3

Two new database tables were created to improve the efficiency of normalized

string searches. Based on IndexFinder’s Phrase table [37], a table was created by

extracting all of the unique normalized strings (nstrs), with repeated words stripped,

and their corresponding concept codes (cuis) from the MRXNS ENG table. As shown

in Table 2.1, this table, called INDEXED NSTR, contains a row for each unique nstr,

mapped to the list of cuis with that particular normalized string representation. The

two additional columns specify the number of words in the normalized string and a

unique row identifier that is used to reference the row. The rows are sorted according

to the number of words in each phrase, such that every row contains at least as many

words as all of the rows that come before it. The one-to-many mapping in each

row from row id to cuis exists for simplicity, allowing a comma-separated list of all

cuis in a specific row to be retrieved at once. If desired, the table could also have

been implemented using a one-to-one mapping from row id to cui, as in a traditional

relational database.

A second table, INVERTED NSTR, was then created by splitting each nstr from

the INDEXED NSTR table into its constituent words and mapping each unique word

to all of the row ids in which it appears. An example of the data contained in

INVERTED NSTR is shown in Table 2.2. Rather than storing this table in memory

(as IndexFinder does), it is kept in a database on disk to avoid the time and space

needed to load a large table into memory. These two new tables allow relatively

efficient retrieval of potential concepts, given a normalized input phrase. For an

25

Table 2.2: The structure of the INVERTED NSTR table, which contains all of the
unique words extracted from INDEXED NSTR, mapped to the list of the rows in
which each word appears.

word row ids

leg 132,631,632,789
low 224,631,789
swell 301,632,789

input phrase of n words, n table lookups to INVERTED NSTR are needed to find

all of the different rows in which each word occurs; consequently, for each row, it is

known which of the words from that row occur in the input phrase. Then, because

the rows in INDEXED NSTR are ordered by the number of words in the nstr, a

single lookup can determine whether all of the words from the nstr of a given row

were found in the input phrase. See Section 2.3 for further details about how these

data structures are used in the coding algorithm.

2.2.4 Spell Checker

Clinicians tend to make spelling errors sometimes, due to being rushed or not know-

ing the spelling of a complex medical term. An open source spell checker (Jazzy) [40]

is therefore incorporated into the coding process. The dictionary word list consists

of the collection of word lists that is packaged with Jazzy, augmented with the words

from the INVERTED NSTR table described above. The UMLS-derived table con-

tains some medical terms that are not in the Jazzy dictionary. Additionally, the

nursing abbreviation and custom abbreviation lists mentioned above are included in

the dictionary list so that they are not mistaken for misspelled words. Every time a

new custom abbreviation is added, the new abbreviation is added to the dictionary

list.

26

Medical Abbreviation Search
Search Related,

Broader, or

Narrower
UMLS Normalized String Search

UMLS Exact Name Search

Custom Abbreviation Search

Spell Check

INPUT: Free-Text Phrase

OUTPUT: n UMLS Code(s)

n = 0

n = 0

n > 0

n > 0

n > 0

n > 0

n > 0

Figure 2-1: A flow chart of the search process, where n is the number of UMLS codes
found by the algorithm at each step.

2.3 Search Procedure

The search procedure for coding is summarized in the flow diagram in Figure 2-1.

The input to the program is a free-text input phrase, and the output is a collection of

suggested UMLS codes. At the first step, the spell checker is run through the phrase,

and if there are any unrecognized words, the user is prompted to correct them before

proceeding with the search.

The next resource that is consulted is the custom abbreviation list. If the list

contains a mapping from the input phrase to any pre-selected concepts, then those

concepts are added to the preliminary results. Next, the UMLS concept table (MR-

CONSO) is searched for a concept name that exactly matches the input phrase. To

guarantee that typing a custom abbreviation or exact concept name will always return

the expected results, these first two searches are always performed.

If there are any results found, the program returns the UMLS codes as output.

From this point on, if the number of preliminary results, n, at each stage is greater

than zero, the program immediately outputs the results and terminates. Terminating

as soon as possible ensures that the program returns potential codes to the user

quickly and does not keep searching unnecessarily for more results.

The next step is to check the common medical abbreviation list to see if the input

27

phrase is an abbreviation that can be expanded. Currently, if the entire phrase is

not found in the abbreviation list, and the phrase consists of more than two words,

then the program proceeds to the next stage. Otherwise, if the phrase consists of

exactly two words, then each word is looked up in the abbreviation list to see if it can

be expanded. Each of the combinations of possible expansions is searched for in the

custom abbreviation list and MRCONSO table. For example, if the input phrase is

pulm htn, first the whole phrase is looked up in the medical abbreviation list. If there

are no expansions for pulm htn, then pulm and htn are looked up separately. Say pulm

expands to both pulmonary and pulmonic, and htn expands to hypertension. Then

the phrases pulmonary hypertension and pulmonic hypertension are both searched for

in the custom abbreviations and UMLS concept table.

The attempt to break up the phrase, expand each part, and re-combine them is

limited to cases in which there are only two words, because the time complexity of the

search can become very high if there are several abbreviations in the phrase and each

of the abbreviations has several possible expansions. For example, consider a phrase

x y z, where each of the words is an abbreviation. Say x has 3 possible expansions, y

has 5 possible expansions, and z has 3 possible expansions. Then there are 3*5*3 =

45 possible combinations of phrases between them.

An alternate method of performing this step is to expand and code each word

separately, instead of trying to combine the words into one concept. This method

would work correctly, for example, if the input phrase was mi and chf. Expanding

mi would produce myocardial infarction and expanding chf would produce congestive

heart failure. Coding each term separately would then correctly produce the two

different concepts, and this method would only require a number of searches linear

in the total number of expansions. However, this method would not work as desired

for phrases such as pulm htn, because coding pulm and htn separately would produce

two different concepts (lung structure and hypertensive disease), whereas the desired

result is a single concept (pulmonary hypertension). In an interactive coding method,

users have the flexibility to do multiple searches (e.g., one for mi and one for chf),

if the combination (mi and chf) cannot be coded. Thus, using the “combination”

28

method of abbreviation expansion was found to be more favorable.

If there are still no concept candidates found after the medical abbreviation

searches, the algorithm then normalizes the input phrase and tries to map as much of

the phrase as possible into UMLS codes. Below are the steps performed during this

stage:

1. Normalize the input phrase using the Norm program, to produce normalized

phrase nPhrase.

2. For each word word in nPhrase, find all rows row id in INVERTED NSTR in

which word occurs. Create a mapping from each row id to a list of the words

from that row that match a word from nPhrase.

3. Set unmatchedWords equal to all of the words from nPhrase. Sort the rows

by the number of matches m found in each row.

4. For each m, starting with the greatest, find all of the rows row id that have

m matches. Keep as candidates the rows that have exactly m words and con-

tain at least one word from unmatchedWords. Also keep as candidates the

rows that have excess (i.e., more than m) words but contain a word from

unmatchedWords that no other rows with fewer words have. Store the can-

didate rows in the same order in which they were found, so that rows with

more matched words appear first in the results. Remove all of the words from

unmatchedWords that were found in the candidate rows. Until unmatchedWords

is empty, repeat this step using the next largest m.

5. For each candidate row, get all concepts from that row using the INDEXED NSTR

table.

In step 1, Norm may produce multiple (sometimes incorrect) normalized represen-

tations of the input string (e.g., left ventricle is normalized to two different forms, left

ventricle and leaf ventricle). In these cases, only the first normalized representation

is used, in order to keep the number of required lookups to a minimum. Furthermore,

29

Table 2.3: The portion of INVERTED NSTR that is used in the normalized string
search for the phrase thick white sputum.

word row ids

sputum 834,1130,1174,1441,...
thick 834,1130,1174,...
white 1441,...

Table 2.4: The inverse mapping created from each row to the words from the row
that occur in the input string. matched numwords is the number of words from the
input that were found in a particular row, and row numwords is the total number of
words that exist in the row, as found in INDEXED NSTR.

row id matched words matched numwords row numwords

834 sputum, thick 2 2
1130 sputum, thick 2 3
1174 sputum, thick 2 3
1441 sputum, white 2 4

the UMLS normalized string table (MRXNS ENG), which was created using Norm,

often contains separate entries for the different representations that Norm gives (e.g.,

the concept for left ventricle is linked to both normalized forms left ventricle and leave

ventricle), so even if only the first normalized form is used, the correct concept can

usually be found.

Step 2 finds, for each word in nPhrase, all of the rows from INVERTED NSTR

that the word appears in, and creates an inverted mapping from each of these rows to

the words that appeared in that row. In this way, the number of words from nPhrase

that were found in each row can be counted. Consider, for example, the phrase thick

white sputum. After Norm converts the phrase into sputum thick white, each of the

three words is looked up in INVERTED NSTR to find the row ids in which they exist

(see Table 2.3). In Table 2.4, an inverted mapping has been created from each of the

row ids to the words from Table 2.3.

In Step 3, the rows are sorted according to the number of matched words, so

that when going down the list, the rows with more matched words will be returned

30

Table 2.5: An example of the final row candidates left over after filtering. The cuis
corresponding to each of these rows are returned as the output of the normalization
stage.

row id cuis nstr numwords

834 C1 sputum thick 2
1441 C2 appearance foamy sputum white 4

first. Some rows in this list might contain extra words that are not in nPhrase,

and some rows might contain only a subset of words in nPhrase. In the above

example, the greatest number of words that any row has in common with the phrase

thick white sputum is two (rows 834, 1130, and 1174 have sputum and thick, while

row 1441 has sputum and white). The total number of words in row 834 (found in

INDEXED NSTR) is exactly two, whereas the other three rows have extraneous (i.e.,

more than two) words.

Step 4 prioritizes the rows and filters out unwanted rows. Each “round” consists

of examining all of the rows that have m matching words and then deciding which

rows to keep as candidates. The unmatchedWords list keeps track of which words

from nPhrase have not been found before the current round, and initially contains

all of the words in nPhrase. For each number of matched words m, the rows that

contain no extraneous words are added to the candidate list first, followed by rows

that have extraneous words but also have words that none of the rows with fewer

extraneous words have. Ordering the candidate rows this way ensures that as many

words from nPhrase are covered as possible, with as few extraneous words as possible.

Once unmatchedWords is empty or there are no more rows to examine, Step 4 ends

and the concepts from the candidate rows are returned as the output of the coding

algorithm’s normalization stage. Only one round (m=2) needs to be performed for

thick white sputum, because all words in the phrase can be found in this round. Row

834 is kept as a candidate because it covers the words thick and sputum without

having any extraneous words, but rows 1130 and 1174 are thrown out because they

contain extraneous words and do not have any new words to add. Row 1441 also

31

contains extra words, but it is kept as a candidate because it contains a word (white)

that none of the other rows have thus far. Table 2.5 shows the two rows that are left

at the end of this step. The results of the normalization stage are the two concepts,

C1 and C2, found in the candidate rows.

At any of the stages of the coding algorithm where potential concepts are returned,

the user has the option of searching for related, broader, or narrower terms. A concept

C1 has a broader relationship to a concept C2 if C1 is related to C2 through a

parent (PAR) or broader (RB) relationship, as defined in the UMLS MRREL table.

Similarly, a narrower relationship between C1 and C2 is equivalent to the child (CHD)

and narrower (RN) relationships in MRREL. These relationships allow the user to

explore the UMLS hierarchy and thus are helpful for finding concepts with greater or

less specificity than those presented.

2.4 Configuration Options

The free-text coding tool can be run with various configurations. For example, the

name of the UMLS database and abbreviation and dictionary lists are all configurable.

Below is a summary of further options that can be specified for different aspects of

the coding process.

2.4.1 Spell Checking

Spell checking can either be set to interactive or automatic. The interactive mode

is the default used in the graphical version of the software, and can also be used

in the command-line version. When the mode is set to automatic, the user is not

prompted to correct any spelling mistakes. Instead, if a word is unrecognized and

there are spelling suggestions, then the word is automatically changed to the first

spelling suggestion before proceeding.

32

2.4.2 Concept Detail

The amount of detail to retrieve about each concept can be configured as either regular

(the default) or light. The regular mode retrieves the concept’s unique identifier (cui),

all synonyms (strs), and all semantic types (stys). The light mode only retrieves the

concept’s cui and preferred form of the str. If the semantic types and synonyms are

not needed, it is recommended that light mode be used, because database retrievals

may be slightly faster and less memory is consumed.

2.4.3 Strictness

The concept searches may either be strict or relaxed. When this value is set to strict,

then only the concepts that match every word in the input phrase are returned. This

mode is useful when it needs to be known exactly which words were coded into which

concepts. For example, in this mode, no codes would be found for the phrase thick

white sputum, because no UMLS concept contains all three words. In relaxed mode,

partial matches of the input phrase may be returned, so a search for thick white

sputum would find concepts containing the phrases thick sputum and white sputum,

even though none of them completely covers the original input phrase.

2.4.4 Cache

To improve the efficiency of the program, a cache of searched terms and results may

be kept, so that if the same phrase is searched for multiple times while the program

is running, only the first search will access the UMLS database (which is usually the

bottleneck). When the cache is full, a random entry is chosen to be kicked out of

the cache so that a new entry can be inserted. The current implementation sets the

maximum number of cache entries to be a fixed value. The user has an option of not

using the cache (e.g., if memory resources are limited).

33

Figure 2-2: A screenshot of the UMLS coding application that has been integrated
into the Annotation Station.

2.5 User Interface

A graphical user interface for the coding program was developed and integrated into

the Annotation Station for expert annotators to use. The process of labelling an

annotation typically consists of the following steps:

1. The expert identifies a significant clinical event or finding (e.g., a blood pressure

drop in the patient).

2. The expert supplies a free text descriptor for the event (e.g., hemorrhagic shock).

3. The expert invokes the free-text coding application, which performs a search

and returns a list of possible UMLS codes.

4. From the list of results, the expert chooses one or more concepts that aptly

describe the phrase (e.g., C1 - Shock, Hemorrhagic).

Figure 2-2 shows a screenshot of the interface. The input phrase is entered in the

field at the top, labelled Enter concept name. If the interactive spelling mode is used,

34

a dialog will prompt the user to correct any unrecognized words. After the search

procedure is done, the list of concept candidates appears in the results list below

the input field. The Synonyms field is populated with all of the distinct strs (from

the UMLS MRCONSO table) for the currently highlighted concept. Similarly, the

Semantic Types field is populated with all of the concept’s different stys from the

UMLS Semantic Type (MRSTY) table.

The Search related, Search broader, and Search narrower buttons search for con-

cepts with the related, broader, or narrower relationships, as described in Section 2.3.

The Create new abbreviation button opens up a dialog box allowing the user to add

a custom abbreviation that is linked to one or more selected concepts from the can-

didate list.

Up to this point, the standalone and Annotation Station versions of the interface

are essentially the same. The remaining panels below are specifically designed for

Annotation Station use. Expert clinicians found that in labelling state and flag anno-

tations [9], there was a small subset of UMLS concepts that were often reused. Rather

than recoding them each time, a useful feature would be to have pre-populated lists

of annotation labels, each mapped to one or more UMLS concepts, to choose from.

Therefore, the State Annotation Labels, Flag Annotation Labels, and Qualifiers panels

were added. The state and flag annotation lists each contain a collection of commonly

used free-text annotation labels, which are each linked to one or more concepts. The

qualifiers are a list of commonly used qualifiers, such as stable, improved, and possi-

ble, to augment the annotation labels. Upon selecting any of the annotation labels or

qualifiers, the concepts to which they are mapped are added to the Selected Concepts

box. In addition, the annotator can use the coding function to search for additional

free-text phrases that are not included in the pre-populated lists. An annotation label

can be coded with multiple concepts because often there is no single UMLS concept

that completely conveys the meaning of the label. To request a new concept to be

added to the static lists, the user can highlight concepts from the search results and

press the Suggest button. After all of the desired concepts are added to the Selected

Concepts list, the Finished button is pressed and the concept codes are added to the

35

annotation.

2.6 Algorithm Testing and Results

To evaluate the speed and accuracy of the coding algorithm, an unsupervised, non-

interactive batch test of the program was run, using as input almost 1000 distinct

medical phrases that were manually extracted by research clinicians from a random

selection of almost 300 different BIDMC nursing notes. Specifically, the focus was

narrowed to three types of clincal information (medications, diseases, and symptoms)

to realistically simulate a subset of phrases that would be coded in an annotation

situation.

2.6.1 Testing Method

The batch test was run in light (retrieving only concept identifiers and names) and

relaxed (allowing concept candidates that partially cover the input phrase) mode,

using automatic spelling correction. No cache was used, since all of the phrases

searched were distinct. The custom abbreviation list was also empty, to avoid unfairly

biased results. The 2004AA UMLS database was stored in MySQL (MyISAM) tables

on an 800MHz Pentium III with 512MB RAM, and the coding application was run

locally from that machine. Comparisons were made between searching on the entire

UMLS and using only the SNOMED-CT subset of the database.

The test coded each of the phrases and recorded the concept candidates, along

with the time that it took to perform each of the steps in the search (shown in Figure

2-1). If there were multiple concept candidates, all would be saved for later analysis.

To judge the accuracy of the coding, several research clinicians manually reviewed the

results of the batch run, and for each phrase, indicated whether or not the desired

concept code(s) appeared in the candidate list.

In addition, as a baseline comparison, the performance of the coding algorithm was

compared to that of a default installation of NLM’s MMTx [3] tool, which uses the

entire UMLS. A program was written that invoked the MMTx processTerm method

36

Table 2.6: A summary of the results of a non-interactive batch run of the coding
algorithm. For each of the three tests (SNOMED-CT, UMLS, and MMTx), the
percentage of the phrases that were coded correctly and the average time it took to
code each phrase are shown, with a breakdown by semantic type.

Diseases Medications Symptoms

SNOMED-CT
% Correct 80.1% 50.7% 77.5%
Time 149.3ms 151.6ms 203.9ms

Entire UMLS
% Correct 85.6% 83.3% 86.4%
Time 169.7ms 107.1ms 227.0ms

MMTx with UMLS
% Correct 71.9% 66.9% 80.2%
Time 1192.0ms 614.8ms 893.9ms

on each of the medical phrases and recorded all of the concept candidates returned,

as well as the total time it took to perform each search.

2.6.2 Results

Out of the 988 distinct phrases extraced from the nursing notes, 285 were diseases,

278 were medications, and 504 were symptoms. There were 77 phrases that were

categorized into more than one of the semantic groups by different people, possibly

depending on the context in which the phrase appeared in the nursing notes. For

example, bleeding and anxiety were both considered diseases as well as symptoms. The

phrases that fell into multiple semantic categories were coded multiple times, once

for each category. The phrases were generally short; disease names were on average

1.8 words (11.3 characters) in length, medications were 1.3 words (9 characters), and

symptoms were 2.2 words (13.8 characters).

The results for the three types of searches (using SNOMED-CT, using the entire

UMLS, and using MMTx with the entire UMLS) are summarized in Table 2.6. Each

of the percentages represents the fraction of phrases for which the concept candidate

list contained concepts that captured the full meaning of the input phrase to the best

of the reviewer’s knowledge. If only a part of the phrase was covered (e.g., if a search

37

on heart disease only returned heart or only returned disease), then the result was

usually marked incorrect.

Using the SNOMED-CT subset of the UMLS, only about half of the medications

were found, and around 80% of the diseases and symptoms were found. Of the dis-

eases, medications, and symptoms, 4.2%, 33.7%, and 4.2% of the searches returned

no concept candidates, respectively. Expanding the search space to the entire UMLS

increased the coding success rate to around 85% for each of the three semantic cate-

gories. Only 2.8%, 4%, and 1.6% of the disease, medication, and symptom searches

returned no results using the entire UMLS. For both versions of the algorithm, the

average time that it took to code each phrase was approximately 150 milliseconds

for diseases and a little over 200 milliseconds for symptoms. Using the entire UMLS

generally took slightly longer than using only SNOMED-CT, except in the case of

medications, where the UMLS search took about 100 milliseconds and SNOMED-CT

search took approximately 150 milliseconds per phrase. In comparison, MMTx took

over one second on average to code each disease, over 600 milliseconds for each med-

ication, and almost 900 milliseconds for each symptom. The percentage accuracy for

medications and symptoms was slightly better than that of SNOMED-CT, but in all

cases the UMLS version of the coding algorithm performed better than MMTx. For

the disease, medication, and symptom semantic categories, the MMTx search found

no concept candidates 12.6%, 27%, and 9.2% of the time, respectively.

A distribution of the search times between the various stages of the automatic

coding algorithm, for both SNOMED-CT and UMLS, is shown in Figure 2-3. Timing

results were recorded for the spell checking, exact name search, medical abbreviation

search, and normalized string search stages of the coding process. Because the custom

abbreviation list was not used, this stage was not timed. For each stage, the number

of phrases that reached that stage is shown in parentheses, and the average times

were taken over that number of phrases. For example, in the medications category,

205 of the exact phrase names were not found in SNOMED-CT, and the algorithm

proceeded to the medical abbreviation lookup. In contrast, using the entire UMLS,

only 110 of the medication names had not been found after the exact name lookup.

38

 0

 50

 100

 150

 200

(147) (113)(189) (133)(285) (285)(285) (285)

T
im

e
(m

ill
is

ec
on

ds
)

Diseases

Spell Checking Exact Name Medical Abbreviation Normalized String

SNOMED-CT
Entire UMLS

 0

 50

 100

 150

 200

(181) (89)(205) (110)(278) (278)(278) (278)

T
im

e
(m

ill
is

ec
on

ds
)

Medications

Spell Checking Exact Name Medical Abbreviation Normalized String

 0

 50

 100

 150

 200

(375) (322)(400) (337)(504) (504)(504) (504)

T
im

e
(m

ill
is

ec
on

ds
)

Symptoms

Spell Checking Exact Name Medical Abbreviation Normalized String

Figure 2-3: The average time, in milliseconds, that the coding algorithm spent in each
of the main stages of the coding process. The custom abbreviation search is omitted
because it was not used in the tests. Comparisons are made between searching on the
entire UMLS and on only the SNOMED-CT subset. In parentheses for each stage
are the number of phrases in the test set, out of 670 total, that made it to that stage
of the process.

39

In all cases, the largest bottleneck was the normalized string search, which took

approximately 150-250 milliseconds to perform. Because only about 50-65% of the

phrases reached the normalized search stage, however, the average total search times

shown in Table 2.6 were below the average normalized search times. Of the time

spent in the normalized search stage, 50-70 milliseconds were spent invoking the

Norm tool to normalize the phrase. The second most time-consuming stage was the

spell checking stage. For the diseases, 66 spelling errors were found and 45 of those

were automatically corrected; for medications, 69 of 112 mistakes were corrected; for

symptoms, 92 of 124 mistakes were corrected.

2.6.3 Discussion

The timing and accuracy tests show that on average the coding algorithm is very fast,

and is a vast improvement over MMTx when using the same search space. The concept

coverage of SNOMED-CT was noticeably narrower than that of the entire UMLS,

especially for medications. Currently, annotators have been labelling medications

with their generic drug names if the brand names cannot be found in SNOMED-CT,

but it might be useful to add a vocabulary of drug brand names, such as RxNorm [4],

to make coding medications in SNOMED-CT faster. If annotation labels are to be

limited to SNOMED-CT concepts, another possibility is for the coding algorithm to

search the entire UMLS, and from the results, use the UMLS relationship links to

search for related concepts, until the most closely related SNOMED-CT concept is

found.

Although not all phrases in the batch test were successfully coded, the test was

intended to evaluate how many of the phrases could be coded non-interactively and

on the first try. In the interactive version of the coding algorithm, the user would be

able to perform subsequent searches or view related concepts to further increase the

chance of finding the desired codes. Furthermore, the test only used distinct phrases,

whereas in a practical setting (e.g., during annotation or extraction of phrases from

free-text notes) it is likely that the same phrase will be coded multiple times. The

addition of both the custom abbreviation list and the cache would make all searches on

40

repeated phrases much faster, and also increase the overall rate of successful coding.

One noticeable problem in the non-interactive algorithm was that the spell checker

would sometimes incorrectly change the spelling of words that it did not recognize,

such as dobuta (shorthand for the medication dobutamine), which it changed to doubt

and subsequently coded into irrelevant concepts. This problem would be resolved in

the interactive version, because the user has the option of keeping the original spelling

of the word and adding it to the spelling dictionary or adding it as an abbreviation.

A solution to the problem in the non-interactive version might be to only change the

spelling if there is exactly one spelling suggestion (increasing the likelihood that the

spelling suggestion is correct), but without human intervention there is still no way

of knowing for certain if the spelling is correct. Furthermore, if the original word was

not found in the dictionary lists, it is unlikely that it would be coded successfully

anyway, because the dictionary list includes all known abbreviations and normalized

strings. There are other open source spell checkers that might have been used instead,

such as the NLM’s GSpell [1], which is intended to be useful in medical applications.

However, Jazzy was chosen because it is much faster than GSpell and does not require

a large amount of disk space for installation.

Another problem that occurred was in the normalization phase of the program.

Norm often turns words into forms that have completely different meanings than the

original word. For example, it turns bs’s coarse (meaning breath sounds coarse) into

both b coarse and bs coarse; in this case, the second normalization is correct, but

because the coding algorithm only uses the first form, it does not find the correct

one. A possible fix would be for the algorithm to consider all possible normalized

forms; although the performance would decrease, the coverage of the algorithm might

improve.

Many of the diseases and symptoms that were incorrectly coded were actually

observations or measurements that implied a problem or symptom. For example,

number ranges such as (58-56, 60-62) were taken to mean low blood pressure, 101.5

meant high temperature, bl sugars>200 meant hyperglycemia, and creat 2.4 rise from

baseline 1.4 meant renal insufficiency. The coding algorithm currently does not have

41

the capacity to infer meaning from such observations, but it appears that annotators

and other clinicians find such interpretations useful.

Another problem that the algorithm had was that, despite using a medical ab-

breviation list, it still did not recognize certain abbreviations or symbols used by the

nurses, such as ˆchol, meaning high cholesterol. The algorithm also had trouble at

times finding the correct meaning for an ambiguous abbrevation. The abbreviation

arf expands into acute renal failure, acute respiratory failure, and acute rheumatic

fever. In the SNOMED-CT subset of the UMLS, the MRCONSO table does not have

a string matching acute renal failure, but it does have strings matching the other two

phrases. Therefore, the other two phrases were coded first, and the program termi-

nated before acute renal failure (in this case, the desired concept) could be found.

The mistakes also included some anomalies, such as k being coded into the keyboard

letter “k” instead of potassium, dm2 being coded into a qualifier value dm2 instead of

diabetes type II, and the medication abbreviation levo being coded into the qualifier

value, left. In these cases, a method to retain only the more relevant results might

have been to filter the results by semantic category, keeping only the concepts that

belong to the disease, medication, or symptom categories. For example, after search-

ing for an exact concept name for levo, if the only result had been the qualifier value

left, the search would continue on to the medical abbreviation list lookup. Assum-

ing that levo was on the abbreviation list, then the concept code for the medication

levo would then be found. Filtering might help in cases where the desired semantic

category is known in advance, as in the case of the batch testing, where clinicians

had manually extracted phrases from these three specific categories. In a completely

automated system, however, it is not known which parts of the text might belong

to which semantic categories, so it might be better to explore all possibilities rather

than filtering.

One important issue that also must be considered is that human annotators often

have very different ways of interpreting the encoding of phrases. Among the experts

that judged the results of the batch test, some were more lenient than others in

deciding the correctness of codes. Sometimes the UMLS standardized terminology was

42

different from what the clinicians were used to seeing, and there was disagreement or

confusion as to whether the UMLS concept actually described the phrase in question.

Some standardization of the way the human judging is done may make the test results

more relevant and help in improving the algorithm in the future.

Despite some of the difficulties and issues that exist, the coding algorithm has

been shown to be efficient and accurate enough to be used in a real-time setting; a

graphical version of the program is currently being used by clinicians in the Anno-

tation Station. Furthermore, although the algorithm currently performs relatively

well without human intervention, there are several possible ways to help improve the

relevance of the concept candidates returned. A better spell checking method might

be explored, so that words are not mistakenly changed into incorrect words. The

addition of UMLS vocabularies, particularly for medications, may help in returning

more relevant results more quickly, given a larger search space. Finally, a way to infer

meaning from numerical measurements may prove to be a useful future extension of

the algorithm.

43

44

Chapter 3

Development of a Training Corpus

In order to develop an algorithm that efficiently and reliably extracts clinical concepts

from nursing admission and progress notes, a “gold standard” corpus is needed for

training and testing the algorithm. There currently are no known clinical corpora

available that are similar in structure to the BIDMC nursing notes and that have the

significant clinical phrases extracted. This chapter describes the development of a

corpus of nursing notes with all of the diseases, medications, and symptoms tagged.

Creating the corpus involved an initial, automatic “brute force” tagging, followed by

manual review and correction by experts.

3.1 Description of Nursing Notes

To comply with federal patient privacy regulations [35, 34], the nursing notes used

in this project consist of a subset of re-identified notes selected from the MIMIC II

database. As detailed in [20], a corpus of over 2,500 notes was manually de-identified

by several clinicians and then dates were shifted and protected health information

manually replaced with surrogate information. A small subset of the re-identified

notes was used to form a training corpus for automatic clinical information extraction.

The nursing notes are a very valuable resource in tracking the course of a patient,

because they provide a record of how the patient’s health was assessed, and in turn

how the given treatments affected the patient. However, because there exist many

45

notes and they are largely unstructured, it is difficult for annotators and automated

programs to be able to quickly extract relevant information from them. The nurses

generally use short phrases that are densely filled with information, rather than com-

plete and grammatical sentences. The nurses are prone to making spelling mistakes,

and use many abbreviations, both for clinical terms and common words. Sometimes

the abbreviations are hospital-specific (e.g., an abbreviation referring to a specific

building name). Often, the meaning of an abbreviation depends on the context of

the note and is ambiguous if viewed alone. Appendix A shows a number of sample

nursing notes from the BIDMC ICUs.

3.2 Defining a Semantic Tagset

Because the nursing notes are so densely filled with information, almost everything

in the notes is important when analyzing a patient’s course. However, it is useful

to categorize some of the important clinical concepts and highlight or extract them

from the notes automatically. For example, when reviewing the nursing notes, anno-

tators typically look for problem lists (diseases), symptoms, procedures or surgeries,

and medications. It would be useful if some of this information were automatically

highlighted for them. Moreover, developing such an extraction algorithm would fur-

ther the goals of an intelligent patient monitoring system that could extract certain

types of information and automatically make inferences from collected patient data.

This research focuses on extracting three types of information in the notes - diseases,

medications, and symptoms. It is imagined that the algorithms developed can be

easily expanded to include other semantic types as well.

The 2004AA version of the UMLS contains 135 different semantic types (e.g.,

Disease or Syndrome, Pharmacologic Substance, Therapeutic or Preventive Procedure,

etc.); each UMLS concept is categorized into one or more of these semantic groups.

These semantic types are too fine-grained for the purposes of an automated extraction

algorithm; researchers or clinicians may not need to differentiate between so many

different categories. Efforts have been made within the NLM to aggregate the UMLS

46

Table 3.1: The mappings between semantic types and UMLS stys for diseases, medi-
cations, and symptoms.

Semantic Type UMLS Semantic Types (stys)

DISEASE Disease or Syndrome, Fungus, Injury or Poison-
ing, Anatomical Abnormality, Congenital Abnormality,
Mental or Behavioral Dysfunction, Hazardous or Poi-
sonous Substance, Neoplastic Process, Pathologic Func-
tion, Virus

MEDICATION Antibiotic, Clinical Drug, Organic Chemical, Pharma-
cologic Substance, Steroid, Neuroreactive Substance or
Biogenic Amine

SYMPTOM Sign or Symptom, Behavior, Acquired Abnormality

semantic groups into less fine-grained categories [6]. These NLM-defined groupings,

however, are not ideal for differentiating between the types of information that must

be extracted from the nursing notes. For example, they do not differentiate between

diseases and symptoms, and the medications are all included in a Chemicals & Drugs

category that may be too broad. Therefore, a different classification was used instead,

as shown in Table 3.1.

3.3 Initial Tagging of Corpus

Creating a gold standard corpus of tagged phrases involves going through all of the

notes and marking where the phrases of interest (diseases, medications, and symp-

toms) occur. It is very time-consuming for humans to manually perform this task.

Therefore, an automated algorithm was first run through the corpus of notes, tagging

everything that appeared to be a disease, medication, or symptom. The hope was

that the automated method would do most of the work, and then the human experts,

when reviewing the tagged output, would only need to mark each highlighted phrase

as correct or incorrect. For each note, the automated tagging algorithm first tokenizes

the note, and then determines the best coding of each sentence. From the concepts

that constitute the best coding, the diseases, medications, and symptoms are saved

47

for later analysis by the human experts.

3.3.1 Tokenization

The first step of the automated tagging process was to tokenize each note into sep-

arate words and symbols, so that each different token could be understood. The

algorithm uses a list of acronyms and abbreviations containing punctuation or num-

bers that should not be broken up (e.g., p.m., Dr., r/o, and a&ox3) and a large list

of stop words. The stop words include all of the strings from the UMLS SPECIAL-

IST Lexicon’s agreement and inflection (LRAGR) table that belong to the following

syntactic categories: auxiliaries, complementizers, conjunctions, determiners, modals,

prepositions, and pronouns.

Below are the rules that were used for tokenization. For each step, spaces are not

inserted if they would split up an acronym or stop word.

1. Add a space between a number and a letter if the number comes first (e.g., 5L,

7mcg, 3pm).

2. Do not add a space between a letter and number if the letter comes first (e.g.,

x3, o2, mgso4).

3. Do not separate contractions (e.g., can’t, I’m, aren’t).

4. Add a space between letters and punctuation, unless the punctuation is an

apostrophe (e.g., eval/monitoring. is changed to eval / monitoring ., but

iv’s stays the same).

5. Add a space between punctuation and numbers, unless the punctuation is a

period between two numbers (e.g., 1.2), or a period preceded by whitespace

and followed by a number (e.g., .5)

6. Add a space between two punctuation marks or symbols (e.g., ... becomes

. . .).

48

For example, the phrase echo 8/87 showing EF 20-25% would be tokenized into

echo 8 / 87 showing EF 20 - 25 %.

Within a word, letters that are followed by numbers are not separated because

such words are usually either abbreviations or intended to be a single word, as in

the examples above. On the other hand, numbers followed by letters often refer to

units and times and can be separated. Words with apostrophes are not tokenized

because they would split up known contractions. For words in which apostophes are

used to indicate the possessive form or (incorrectly) used to indicate plurality, the

lack of separation is acceptable because when coding such words, normalization will

remove the ’s endings. Other punctuation marks and symbols are separated from

words and numbers (unless the punctuation is a decimal point within a number) so

that they can be treated as tokens separate from the words. After tokenizing a note,

most sentences or phrases can be found by looking for punctuation tokens, such as

periods (.), semicolons (;), and commas (,), that are set off from other tokens by

spaces. Periods that do not have a space both before and after them are either part

of acronyms or part of numbers with decimal points.

3.3.2 Best Coverage

For the initial tagging of the corpus, an automated coding and search algorithm was

used to find as many of the diseases, medications, and symptoms in the notes as

possible. The algorithm converts each sentence in a nursing note into a graph-like

structure, where the phrases within a sentence make up the nodes, and each node has

a cost associated with it, depending on the semantic type of the phrase. The best

coding of the sentence is the sequence of nodes with the lowest total cost that covers

the sentence completely.

The clinicians generally regarded the task of manually removing incorrectly tagged

phrases as less tedious and time-consuming than manually looking for phrases that

were missed by the automatic tagger. Thus, the goal of this automatic algorithm,

which in effect was a “brute force” lookup method, was to extract any phrase that

had a chance of being a medication, disease, or symptom, with the risk of producing

49

1 createNodes(sentence):

2 for length=1 to min(numWords,maxWords)
3 for each subset phrase of sentence consisting of length words

4 if phrase is a stop word or

5 phrase contains only numbers and symbols
6 create new node(cost=4*length+5)
7 else if length > 1 and

8 phrase begins or ends with stop word or punctuation
9 do not create node

10 else

11 try to code phrase
12 if results empty

13 create new node(cost=10*length+5)
14 else if results contains disease, medication, or symptom
15 create new node(cost=2*length+5)
16 else

17 create new node(cost=6*length+5)

Figure 3-1: Pseudo-code showing the creation of weighted nodes from a sentence,
where numWords is the number of words in the sentence after tokenization, and
maxWords is a pre-specified maximum phrase length, currently set to 6 words. After
all of the nodes in the sentence are created, the best path is found using the graph
search algorithm in Figure 3-2.

many false positives.

The phrases that potentially belonged to one of the desired semantic categories

were given the lowest cost, thus making it more likely that they would be part of

the best path through the sentence. In order to determine the cost of each phrase,

the meaning of the phrase had to first be determined. For each note, the algorithm

first tokenizes the note using the tokenization algorithm from Section 3.3.1, and then

divides the note into sentences (where “sentences” also include phrases) by looking

for periods, commas, and semi-colons. Then, for each sentence, each sub-phrase

(minus some exceptions) was coded using the coding algorithm from Chapter 2 and

the results were used to determine the meaning, and associated cost, of the phrase.

Figure 3-1 shows the algorithm used to create these nodes.

Considering the terse language and abundance of abbreviated terms in the notes,

nurses seemed unlikely to describe a phrase using more than a few words; accordingly,

the maximum length of phrase searched was set to a constant number of words (6)

50

to limit the number of searches performed. For a sentence of numWords words, and

maximum phrase length maxWords, at most n*(n+1)/2 nodes will be created, where

n is the lesser of numWords and maxWords.

For each sentence, each subset of the sentence consisting of between 1 and n

consecutive words is considered for node creation. If the phrase contains more than

one word, and the first or last word is a stop word, then no node is created for

the phrase. This check is done to prevent phrases such as and coughing from being

coded, because if that phrase were to be coded into the concept for coughing, then

the phrase and coughing would incorrectly be highlighted in the corpus. The gold

standard corpus must contain the exact indices of the medical terms that have been

coded, so that a word like and, which really should not be part of the phrase, is

not mistakenly tagged as a symptom in the future, for example. A phrase such as

coughing and wheezing is still coded because the and is in the middle of the phrase,

rather than being extraneous.

If the phrase itself is a stop word, then it is not coded. Otherwise, the phrase

is run through the free-text coding algorithm, and a node is created based on the

results of the search. The coding algorithm uses the entire UMLS, rather than only

the SNOMED-CT subset, in order to increase the chances of finding a code for each

phrase. It also uses a list of custom abbreviations that was created and used by ex-

perts on the Annotation Station. The configuration options for the coding algorithm

include automatic spell checking (because the whole process is automated), and strict

searches, which require all words in the phrase to be found in a single concept. If

there are multiple concept candidates, the list is traversed in order until the first med-

ication, disease, or symptom is found. The phrase is assigned the code and semantic

type that was found.

The costs are designed to favor phrases that can be coded into medications, dis-

eases, or symptoms. The exact costs given to each node were a bit arbitrary, but

overall they conveyed the relative priorities that the different phrase types had in the

coding algorithm. Phrases that could be coded into diseases, medications, and symp-

toms were given the lowest cost because they were the most important. Floating stop

51

1 getBestPath(startNode):

2 push startNode onto stack
3 while stack not empty

4 node n = node at top of stack

5 if n has no adjacent nodes
6 n = settled

7 pop n from stack

8 else
9 for each adjacent node adj
10 if adj not settled

11 push adj onto stack
12 goto 3

13 else if no lowest cost edge from n exists

14 add edge (n,adj)
15 else if cost(n->end) > cost(n)+cost(adj->end)
16 replace lowest cost edge from n with (n,adj)

Figure 3-2: Pseudo-code showing the graph search algorithm, where (a,b) is an edge
from node a to node b and a->b is a path from a to b with 0 or more nodes in between.
The lowest cost edge from a node is the first edge in the lowest-cost path from the
node to an end node.

words, symbols, and numbers were also given a low cost so that they would not be

attached to the beginning or end of a “meaningful” phrase. Phrases that were coded

into UMLS concepts, but were not diseases, medications, or symptoms, were given a

slightly higher cost, and phrases that could not be coded were given the highest cost.

Furthermore, by adding a constant to the cost of each node created, the algorithm

favors paths containing fewer nodes, and thus larger phrases.

As each new node is created, an edge from node a to node b is created if the last

word of a’s phrase and the first word of b’s phrase are adjacent words in the sentence.

Thus, from each possible start node (i.e., those nodes with no incoming edges), each

complete path through the sentence is guaranteed to cover all of the words in the

sentence. The method used for finding the best path through a sentence is essentially

a depth first graph search, where the cost of a path is the sum of the costs of all the

nodes on the path, and the path with the lowest total cost is the best path.

The graph search algorithm is shown in Figure 3-2. It takes as input a start

node, and produces the ordered list of nodes from the start node to the end of the

52

Table 3.2: The nodes created for the example sentence treated for mi and swollen
legs. For each subset of words in the sentence, if the subset is a stop word, it is not
coded. Otherwise, the automatic coding algorithm is run. The results determine the
cost of the node.

Phrase Result # Words Score

treated for mi and swollen legs (uncoded) 6 65
treated for mi and swollen (uncoded) 5 55
mi and swollen legs (uncoded) 4 45
treated for mi (uncoded) 3 35
mi and swollen (uncoded) 3 35
swollen legs SYMPTOM 2 9
treated OTHER 1 11
for (stop word) 1 9
mi DISEASE 1 7
and (stop word) 1 9
swollen OTHER 1 11
legs OTHER 1 11

sentence, that has the lowest total cost. The edges are unweighted. An end node

is reached when a node that does not have any adjacent nodes is encountered. The

getBestPath method is run on each potential start node, and out of these best paths,

the one path with the lowest cost is kept. Out of the coded phrases on that path,

those that are marked as medications, diseases, or symptoms are extracted. The final

output of the initial tagging stage for each nursing note is the collection of diseases,

medications, and symptoms that were found, along with their UMLS codes and their

locations (beginning and ending character indices) within the text, so that they can

be displayed to the experts later during the manual correction stage.

Table 3.2 shows an example of the nodes created for the sentence treated for mi

and swollen legs. Each subset of the sentence that does not begin or end with a stop

word is made into a node. The words for and and are stop words, so they are not

coded. The remaining phrases are run through the automatic coding algorithm.

After the nodes are created, the graph search algorithm considers every possible

combination of nodes that creates a full path through the sentence:

[treated for mi and swollen legs],

53

[treated for mi and swollen][legs],

[treated][for][mi and swollen legs], etc.

Using the depth-first graph search, the best path through the sentence is found to be:

[treated][for][mi][and][swollen legs]

with a total score of 45 (11+9+7+9+9). The result is as desired, because the maximal

phrases of type medication, disease, or symptom - in this case, the disease mi and the

symptom swollen legs - were extracted.

3.4 Manual Correction of Initial Tagging

Figure 3-3: A screenshot of the interface used to manually correct the initial tagging
of the nursing notes.

The final step in creating the gold standard corpus was to have humans review

the output of the intial, automatic tagging algorithm, and make any necessary correc-

tions. An application was created that loaded each note and highlighted the diseases,

54

medications, and symptoms that were extracted from the automatic tagging algo-

rithm. Figure 3-3 shows a screenshot of the interface of the program. The phrases

are color-coded by semantic type, and when selected, the semantic type, concept

identifier, and concept name are displayed at the top of the screen.

The expert may change the semantic type if it is incorrect, as well as re-code

the phrase if the concept is incorrect. For each phrase, once the semantic type and

concept identifier are judged to be correct, the phrase must be verified by pressing

a specific key. The explicit verification makes it less likely that the users will skip

over a phrase by mistake. If the phrase is not a disease, medication, or symptom,

it may be deleted by pressing another key. All instances of a phrase can be deleted

from all notes at once by “flushing” the phrase. If new phrases are found that were

not extracted by the automatic tagger, the user may also add the new phrase, and

choose its semantic type (disease, medication, or symptom) and UMLS code.

At the end of this stage, each of the nursing notes that has been manually verified

will have a list of the corrected phrases, semantic types, and concept identifiers that

were extracted from it. This corpus of notes forms the gold standard corpus that will

be used to train more advanced automatic tagging algorithms.

3.5 Results

The automatic tagging algorithm was run through several hundred different nursing

notes, taking an average of approximately one minute to code and extract the phrases

from each note. Four clinical experts helped to manually verify the output of the

automatic initial tagging. In total, 252 different nursing notes from 10 different

patients were manually verified. The corpus consisted of over 50,000 words (after

tokenization) and 227,500 characters. Of the gold standard verified phrases, there

were 1359 medications, 559 diseases, and 978 symptoms. Overlapping phrases were

allowed. For example, the phrase digoxin toxic was tagged as a disease, and the first

word of the phrase, digoxin, was also tagged as a medication.

The precision and recall for the initial automatic tagger, broken down into the

55

Table 3.3: The total number of phrases and words in the gold standard corpus, and
the precision and recall of the initial tagging, for both phrases and words.

Diseases Medications Symptoms

Total Phrases 559 1359 978
Phrase Precision 13.6% 34.5% 47.6%
Phrase Recall 58.0% 77.0% 31.7%
Total Words 706 1475 1705
Word Precision 15.7% 29.7% 55.5%
Word Recall 64.9% 81.7% 29.0%

three semantic types, are presented in Table 3.3. Here, precision is defined as:

precision =
phrases correctly retrieved

total phrases retrieved
(3.1)

and recall is defined as

recall =
phrases correctly retrieved

phrases in gold standard
(3.2)

The phrase precision and recall were defined in terms of the number of exact phrases

from the gold standard that matched phrases extracted by the automatic algorithm.

If the phrases were only partial matches, then it did not count as a match. Because

many of the phrases extracted by the automatic tagger overlapped with phrases in

the gold standard, but were not exact matches, the word precision and recall are also

given. These values are defined in terms of the actual number of tokenized words that

matched, between the automatic tagger output and the gold standard.

3.6 Discussion and Improvement of Corpus

As expected, the initial tagging produced many false positives. However, it still missed

many phrases that the human annotators extracted, for several possible reasons. The

automated algorithm was designed to pick out only phrases that could be coded

with a single UMLS concept. However, when the experts manually highlighted the

56

concepts and picked out ones that were missed, they often highlighted phrases that

encompassed more than one concept, such as a symptom and one or more qualifiers

(e.g., sm amount of thick rusty sputum). This tendency might suggest that modifiers

and other qualifier values should have been extracted along with the main clinical

concepts. There might have been abbreviation ambiguities and spelling mistakes

that were not resolved by the automatic tagger. It is also very likely that there

were semantic type ambiguities. Some concepts have several possible semantic types,

according to the UMLS, and the mapping between UMLS semantic types and the

more coarse-grained categories of disease, medication, and symptom might not have

been an ideal mapping.

Among human annotators, there were many inconsistencies in determining what

kind of phrases belonged in which of the semantic categories, or whether they be-

longed to any category at all. Medications were generally classified as drugs that

were administered to the patient, but there was some question about whether or not

to include fluids and nutrition. Some annotators did include these, and some were

not sure whether or not to. The definition of a symptom was by far the most difficult

to agree on. Generally, the experts described them as something that the patient felt.

Three experts included signs in the same category as symptoms (the UMLS has one

category, Sign or Symptom, that includes both) and one did not. One of the three who

included signs only did so for test findings that were positive and categorical, rather

than numeric. One uncertainty that most people had was whether a chronic symptom

counted as a disease or symptom, and whether “normal” symptoms (such as absence

of pain) were considered symptoms. When faced with these ambiguities, some people

would take the initial, automatic tagging as the default correct answer. Sometimes

people would tag a phrase differently each time they saw it. Diseases were relatively

easy to define, except for the uncertainty about whether certain phrases counted as

a disease or a symptom. For most annotators, if the UMLS identified a phrase as a

disease, then it would be verified as a disease. Diseases and symptoms that occurred

in negative phrases (e.g., the mi in no mi) were still generally extracted, because the

fact that the patient did not have mi is still important. A smart extraction program

57

Table 3.4: The newly calculated precision and recall of the initial tagging, after
making a second pass through the gold standard corpus to remove many of the in-
consistencies.

Diseases Medications Symptoms

Total Phrases 499 1322 868
Phrase Precision 12.7% 34.2% 46.5%
Phrase Recall 60.5% 78.4% 34.9%
Total Words 634 1426 1557
Word Precision 14.9% 29.4% 55.2%
Word Recall 68.5% 83.7% 31.6%

would be able to extract mi and recognize the no as a modifier.

Some specific inconsistencies were seen in a small set of nursing notes that was

verified separately by multiple annotators. In one note, one person tagged alert and

oriented as symptoms, whereas the other person considered them as false positives

and removed them. Some people highlighted smaller subsets of a phrase than others;

for example, one person marked left leg hurts as a symptom, while the other only

marked hurts. One person marked tylenol #3 as a medication, whereas the other one

only marked tylenol. The word confusion was tagged in different notes alternately

as a disease and as a symptom. Some annotators relied more than others on the

automatic tagger output, by verifying a phrase as correct if they thought that it was

roughly close to being correct.

Because there was so much variation among the tagging techniques exhibited by

different people, another manual pass was made through all of the notes in the gold

standard corpus, in an attempt to somewhat standardize the tagging. Although

overlapping phrases had been allowed during the manual review of the notes, they

were deleted in this second pass. The automatic tagging algorithms only assign one

tag to each word, and it would have been a better comparison if the gold standard had

similar restrictions imposed on it. For most overlapping phrases, the shorter phrase

was deleted in favor of the longer one (e.g., digoxin was deleted and digoxin toxic was

kept). Many phrases that sounded like findings rather than symptoms were deleted.

It was unclear whether phrases such as sedated or comfortable should be tagged as

58

symptoms or not, so they were usually kept if already tagged. However, many phrases,

such as follows commands and opens eyes to verbal stimuli were considered too broad

or “normal” to be tagged as a symptom. Sometimes for medications, units and

modifiers (e.g., drip, mcg, or iv) were tagged as part of the medication, and these

phrases were usually kept as they were. For symptoms such as rash on back of legs,

it was unclear whether the gold standard should contain the entire phrase, or only

rash. For the most part, the larger phrase was kept in these situations. A newer

version of the gold standard corpus was created after going through each of the

notes again. Table 3.4 shows the new precision and recall measurements of the initial

tagging algorithm, compared to the new gold standard corpus. Because many phrases

were deleted, the precision is slightly worse than before, and the recall is slightly

higher. The many inconsistencies and uncertainties suggest that there need to be

more well-defined standards for what constitutes a disease, medication, or symptom,

that the human annotators can adhere to. A more systematic and standardized

method of tagging needs to be developed and agreed upon, if a larger, more accurate

gold standard corpus is to be made in the future.

59

60

Chapter 4

Automatic Extraction of Phrases

from Nursing Notes

As shown in Chapter 3, exhaustive search methods are computationally expensive and

are not necessarily the most accurate way to extract terms from free text. They also

depend on having a comprehensive knowledge base from which to extract information

about each word. A better way would be to consider the context of each phrase

and to utilize known information about how the meaning of a word is affected by

surrounding text. For example, in one of the sentences from a nursing note, there

might be an indication of a dosage (e.g., 40mg iv), followed by an unknown word

X. Knowledge about the context in which medications appear in the text would

hint that X is the name of a medication. Because such a method would not rely

entirely on matching words to a large vocabulary, it would not require as extensive a

knowledge base as more exhaustive methods would. This chapter compares various

algorithms that were developed to automatically extract a subset of clinical concepts,

including medications, diagnoses, and symptoms, from nursing notes, using statistical

guessing methods. To evaluate their accuracy, the results of the different methods

are compared to the gold standard corpus described in Chapter 3.

61

4.1 Approaches

Some natural language processing algorithms analyze sentences using a top-down

approach, by starting at a high level and looking at the overall structure of the

sentence, and then breaking it down into its constituent parts. Because the nursing

notes are made up of dense, often short phrases that do not have much of a high-level

structure, they might be better analyzed using a bottom-up, word-by-word approach.

In this research, semantic and syntactic tagging methods were used to guess the

semantic type of each word in a nursing note, and in turn extract phrases of interest

from the note.

Two different methods commonly used to tag free text are rule-based methods and

probabilistic methods. The Brill tagger [13] is a well-known transformation-based part

of speech tagger that uses a lexicon of words and their possible parts of speech, along

with a set of learned lexical and contextual rules that constrain the context in which

specific words and tags can appear. The tagger applies these rules to the text until the

tagging cannot be further improved. There are also many different probabilistic (or

statistical) algorithms that can be used to tag free text. A probabilistic tagger uses

observed frequencies of word-tag pairs and common tag sequences from a training

corpus to assign the most likely tag to each word.

To extract medical phrases from nursing notes, different implementations of a

statistical tagging algorithm were created, including a forward-based algorithm and

best-path algorithm. The gold standard training corpus described in Chapter 3 was

used to generate probabilities to be used in the tagging algorithm, and from the

results of the tagging, a list of the relevant phrases was extracted. Additionally,

the rule-based Brill tagger was used to generate parts of speech for each word, to

evaluate whether the addition of syntactic data improves the results of the statistical

algorithm.

62

4.2 System Setup

Before the statistical tagging algorithms can be run, a lot of training data must be

gathered and stored in a format allowing for easy retrieval. Chapter 3 detailed the

development of a gold standard corpus of 252 nursing notes that had the diseases,

medications, and symptoms extracted from them. The corpus was randomly divided

repeatedly into training sets of 232 notes and testing sets of 20 notes, and the training

and testing described below was done separately for each different set. Each time,

the information contained in the training set was used to create the statistical data

for the tagging algorithms.

While the training corpus contains information about the semantic tags that were

most frequently assigned to each word, other potentially useful data about each word,

such as its syntactic tag (part of speech), is not captured in the gold standard corpus.

The sections below detail the collection of syntactic information for each note in

the training corpus, and the combination of semantic and syntactic data to form a

database of training tables.

4.2.1 Syntactic Data

Semantic tags alone reveal the meaning of a phrase or word, but part-of-speech tags

can reveal the function of a specific word within a phrase, and thus help to find the

full extent of each phrase that should be extracted from the text. Thus, it would

be useful to have gold standard syntactic tags to go with each word in the training

corpus, in addition to the semantic tags that have already been extracted. Because

it would have been very time consuming for humans to manually verify the syntactic

tag for every single word in the gold standard corpus, a more automated method of

syntactic tagging was performed using the Brill tagger.

The kappa statistic [17] is often used to evaluate how well classification algorithms

agree with a gold standard. It is calculated as follows:

kappa =
Pa − Pe

1 − Pe

(4.1)

63

where Pa is the percent agreement,

Pa =
correct trials

total trials
(4.2)

The number of total trials is the total number of words tagged. Each word can either

be tagged correctly or incorrectly. The sum of the correct and incorrect trials is equal

to the total number of trials. Pe is the percent expected agreement by chance,

Pe =
n∑

i=1

times gold chose tagi

total trials
∗

times tagger chose tagi

total trials
(4.3)

where n is the total number of different distinct tags that were either found in the

gold standard or found by the automatic tagger, and # times gold chose tagi and

times tagger chose tagi are the number of times the gold standard and the auto-

matic tagger chose tagi, respectively.

By default, the Brill tagger comes with a lexicon trained on the Brown Corpus and

Wall Street Journal, which do not contain a large amount of medical terminology, such

as abbreviations and medication names. However, in a previous project [21], it was

shown that simply adding a medical lexicon to the Brill tagger improved the kappa

from 0.7363 (with the default lexicon) to 0.8839, for a small corpus of nursing notes

where the parts of speech had been manually verified. Because the gold standard

corpus created for phrase extraction is about 10 times larger than the one tested with

the Brill tagger, it was too tedious and unrealistic to have all of the syntactic tags

in the larger corpus manually verified. However, because the Brill tagger was shown

to perform relatively well on the smaller corpus, the tagger was used for the larger

corpus and its output was assumed to be correct.

The input that the Brill tagger expects includes a lexicon, a lexical rule file, a

contexual rule file, and the untagged text. Each line of the lexicon must contain a

word followed by its possible parts of speech, separated by spaces. The most likely

part of speech for each word must occur first in the list, but the rest of the parts of

speech are not ordered. The format of the lexicon is as follows:

infarction NN

64

diseases NNS

suspended JJ VBN VBD

where in this example, NN, NNS, JJ, VBN, and VBD are Penn Treebank [28] tags rep-

resenting the parts of speech noun, plural noun, adjective, past participle, and past

tense verb, respectively. The contextual rule file contains rules for changing tags when

certain words or tags are encountered. For example, if an adjective is followed by a

determiner, the adjective should be changed to a past-tense verb. The lexical rule

file uses clues about unknown words to guess their tags. The default rule files that

come with the Brill tagger were both trained on Wall Street Journal text and contain

several hundreds of rules in total. The untagged input text to the Brill tagger must

be tokenized, with one sentence per line.

To create the part-of-speech medical lexicon to be used by the Brill tagger, syn-

tactic information was extracted from UMLS SPECIALIST Lexicon [32] tables. The

LRAGR (agreement and inflection) table contains a collection of medical concept

strings, each mapped to a syntactic category (e.g., noun or verb) and tense or agree-

ment information (e.g. third person singular or past). Many, but not all, of the

UMLS concepts are represented in this table. Because the Brill tagger was trained

using Penn Treebank [36] part of speech tags, and the contextual and lexical rules

are specific to these tags, the UMLS syntactic information had to be translated into

Penn Treebank tags.

The parts of speech from the LRAGR table do not correspond directly to Penn

Treebank tags; for example, LRAGR contains a syntactic category for complemen-

tizers, and also contains a larger number of modal, auxiliary, determiner agreement

types than the Penn Treebank has. On the other hand, the Penn tagset contains some

parts of speech that are not in the UMLS, such as pre-determiners and WH-words.

Furthermore, the Penn Treebank tagset makes a distinction between proper nouns

and regular nouns, whereas the LRAGR table does not. In these cases, the UMLS

table of properties (LRPRP) was used to find out whether a noun was proper. See

Appendix B for the complete mappings (including some exceptions) used to convert

UMLS syntactic categories into Penn Treebank parts of speech.

65

Because there was no gold standard text that had the parts of speech all tagged,

there was no frequency information for ordering the parts of speech for each word.

Therefore, for words in the lexicon with multiple parts of speech, the tags were ordered

according to the overall frequencies of tags in the lexicon. For example, nouns are the

most frequently occurring part of speech in English text, so for all words that have a

noun as a possible part of speech, the noun would be listed first.

To tag each nursing note, the note was first tokenized using the tokenization

method described in Chapter 2, and then lines were split where periods, commas, or

semicolons occurred. Additionally, because the capitalization varied greatly among

different nursing notes (i.e., some were in all uppercase, some were all lowercase, and

some were mixed), each note was converted to lowercase so that the Brill tagger would

not try to tag uppercase words as proper nouns. The notes were then sent through

the Brill tagger one by one, using the medical lexicon and the default lexical and

contextual rule files as input. The output produced for each note consisted of the

tokenized text with a slash (/) and part of speech after each word, as in the following

example:

pt/NN admitted/JJ for/IN mental/JJ status/NN changes/NNS

4.2.2 Statistical Data

After the notes from the training corpus were all tagged with parts of speech, the

(word, syntactic tag, semantic tag) frequencies could be calculated. For each note,

the following steps were performed:

1. Tokenize the note into separate words and convert everything to lowercase.

2. For each token, find the corresponding syntactic tag from the Brill tagger out-

put.

3. For each token, if it was part of a phrase tagged in the gold standard corpus, tag

the token as MEDICATION, DISEASE, or SYMPTOM accordingly. Otherwise,

if the word contains only punctuation, tag it as PUNCT. If it contains only

66

Table 4.1: The TAGS table contains all of the combinations of word, syntactic tag,
and semantic tag that occurred in the training corpus, along with their frequencies.

word syntactic semantic freq

confirmed VBN OTHER 1
discomfort NN SYMPTOM 8
withdrawn VBN OTHER 1
withdrawn VBN SYMPTOM 1
...

Table 4.2: The BIGRAMS table contains all of the different consecutive sequences of
semantic tags of length 2 that occur in the training corpus, and their frequencies.

first second freq

PUNCT NUM 1412
DISEASE NUM 15
SYMPTOM OTHER 148
...

numbers and punctuation, tag it as NUM. If it is a stop word, tag it as STOP.

If it is none of the above, tag it as OTHER.

The semantic categories PUNCT, NUM, and STOP were added to give more

information about words that would otherwise be tagged as OTHER. After each

token in the training corpus was tagged semantically and syntactically, the results

were recorded in a database table, as shown in Table 4.1. The TAGS table contains

an entry for every combination of word, semantic tag, and syntactic tag that was

found, along with the total number of times it occurred in the training corpus.

Next, three different n-gram tables were created. Each of them contains all of

the distinct sequences of semantic tags of length n that occurred in the training cor-

pus. For each note, all groups of 2, 3, or 4 consecutive words were found, and the

corresponding semantic tag for each word (MEDICATION, DISEASE, SYMPTOM,

NUM, PUNCT, STOP, or OTHER) was used to create the semantic tag sequence,

which was added to the BIGRAMS, TRIGRAMS, or TETRAGRAMS tables (Ta-

bles 4.2-4.4) accordingly. The total number of times each sequence occurred in the

67

Table 4.3: The TRIGRAMS table contains all of the different consecutive sequences
of semantic tags of length 3 that occur in the training corpus, and their frequencies.

first second third freq

PUNCT OTHER MEDICATION 127
MEDICATION OTHER STOP 161
SYMPTOM SYMPTOM PUNCT 251
...

Table 4.4: The TETRAGRAMS table contains all of the different consecutive se-
quences of semantic tags of length 4 that occur in the training corpus, and their
frequencies.

first second third fourth freq

OTHER STOP MEDICATION PUNCT 102
SYMPTOM SYMPTOM PUNCT OTHER 137
SYMPTOM SYMPTOM SYMPTOM SYMPTOM 162
...

corpus was recorded as well. In the n-gram tables, the first n − 1 entries are allowed

to be blank. If the table contains many n-grams of the form “<blank> TAG,” for

example, then it indicates that the semantic type TAG is frequently the first word

of a text note. The TAGS and n-gram tables are used in the automatic extraction

algorithms to find the most likely semantic tag for each word, given its part of speech

and the semantic types of preceding words.

4.2.3 Semantic Lexicon

During the automatic tagging of text, if a word is encountered that was not in the

training corpus, there should be another way of finding out what the most probable

semantic categories for the word are. For example, if the training corpus is very small,

many unknown words will likely be encountered when tagging new next. A lexicon

would be able to help distinguish between words that are simply unknown and words

that are known but just did not appear in the training corpus. Therefore, a semantic

lexicon containing known words and their possible semantic tags was created.

68

The semantic types of the words listed in the lexicon were limited to DISEASE,

MEDICATION, SYMPTOM, and OTHER. If a word had additional semantic types

other than DISEASE, MEDICATION, or SYMPTOM (such as a procedure or finding),

the additional semantic types were listed as OTHER because there was no training

data for those semantic types. The words in the lexicon were extracted from the

strings in the UMLS normalized string table (MRXNS ENG). For each string, all of

its possible concept identifiers were matched to entries in the UMLS Semantic Type

(MRSTY) table [33], to find the possible semantic types. Because the statistical

algorithms analyze the text on a word-by-word basis, the normalized strings that

consisted of multiple words were broken up into their constituent words. Each word

was added to the lexicon separately, and given the same semantic type as the full

phrase. For example, a word like chest refers to a body part by itself, but when

it appears in the phrase chest pain, it is part of a symptom name. Thus, for the

word chest, both OTHER (i.e., a body part) and SYMPTOM are listed as possible

semantic types in the lexicon. For phrases with multiple semantic types, the types

were not ordered.

4.3 Statistical Extraction Methods

Two different statistical algorithms were developed to automatically extract medica-

tions, diseases, and symptoms from a collection of nursing notes. The first one uses a

forward-based algorithm to evaluate the probability of a tag being assigned to a word,

given the tags of the previous one, two, or three words. The second algorithm uses a

Viterbi-based [24] best-path algorithm to find the combination of semantic tags that

would produce the highest-probability tag sequence for a given nursing note. Both al-

gorithms have the option of only using semantic training data from the gold standard

corpus, or additionally using the syntactic data produced by the Brill tagger.

69

hypotensive on dopamine gtt

A A A A

B B B B

C C C C

D D D D

E E E E

semantic

tags <null>

words

Figure 4-1: The forward-based algorithm calculates the most likely tag for each word
by finding the probability of the word given the tag, and the probability that the tag
occurs given the previous one, two, or three tags. Each semantic tag is considered for
each word. There is an implicit “null” first word of each nursing note. This diagram
shows an example phrase along with the possible semantic tags that each word from
the phrase can have.

4.3.1 Forward-Based Algorithm

This method makes one pass through each nursing note, tagging each word based on

the tags of previous words (see Figure 4-1). The training corpus and lexicon most

likely are not complete, so relying solely on them for finding the possible semantic

tags for a word may cause the algorithm to miss the correct tag. Thus, the algorithm

considers every one of the semantic tags from the tagset for each word, in order to

avoid mistakenly ruling out a correct tag for a word. For an n-gram implementation,

the algorithm looks at the previous n − 1 tags to guess the tag for the nth word.

Choosing a very small n (e.g., 2) provides less context with which to make a decision,

whereas choosing a larger n gives more context but at the same time there might be

fewer instances of each n-gram in the training set. The algorithm that was developed

can be run using either bigram (2-stage), trigram (3-stage) or tetragram (4-stage)

frequencies, and can be run with or without using the syntactic data from the Brill

tagger. Comparisons were made between the output of each of the different modes.

Given an untagged nursing note, the program first tokenizes the note using the

method described in Chapter 2. For each word, four different semantic tag types are

70

considered: DISEASE, MEDICATION, SYMPTOM, and one of (OTHER, NUM,

PUNCT, or STOP). For each possible tag, a score is computed for the word-tag pair,

given the semantic tags of the previous one, two, or three words. Out of the four

possible tags, the one yielding the highest score is assigned to the word. For the

bigram implementation, without the use of syntactic data, the tagging equation used

for finding the score for a tag T for the ith word, wordi, is:

scoreT = P (wordi|T) ∗ P (T |tagi−1) (4.4)

where tagi−1 is the semantic tag of the preceding word, wordi−1. P (wordi|T), the

probability of word wordi occurring, given that its semantic tag is T , is calculated

using:

P (wordi|T) =
occurrences of wordi/T

occurrences of T
(4.5)

where the number of occurrences of wordi being tagged with tag T (wordi/T) and the

total number of times any word was tagged with T are both taken from the training

corpus. The value of P (T |tagi−1) is calculated as follows:

P (T |tagi−1) =
occurrences of tagi−1, T

occurrences of tagi−1

(4.6)

The total number of times in the training corpus that a word tagged with tagi−1

was followed immediately by a word tagged with T (tagi−1,T) is divided by the total

number of occurrences of the tag tagi−1, to find the probability of the semantic bigram,

given the tag of the previous word. To tag the first word in the text, the semantic

type of the previous word is assumed to be the empty string.

If the Brill output is used, the text to be tested must first be tokenized and

tagged using the Brill tagger and medical lexicon. The Brill output is read in by the

extraction program so that the score calculations can be performed with this extra

data. With syntactic data included, the bigram equation for the score for a tag T is:

scoreT = P (wordi, posi|T) ∗ P (T |tagi−1) (4.7)

71

where P (wordi, posi|T) is the probability of T occurring at wordi given that the part

of speech of wordi is posi. The only difference from the non-syntactic equation is that

the probability of the word having the given part of speech is now figured into the

equation. Thus,

P (wordi, posi|T) =
occurrences of wordi/posi/T

occurrences of T
(4.8)

An issue that often arises in a statistical training algorithm is that a new word,

word-tag pair, or n-gram sequence that was not seen in the training corpus might be

encountered in the text. Some method of smoothing needs to be involved, so that

these unrecognized words and semantic tag sequences are not automatically ruled

out. Therefore, unseen word-tag pairs were given a default small, non-zero value.

However, by adding these extra frequencies, there is then the risk of reducing the

relative frequency of words and tags that actually do appear in the training corpus.

Thus, the result of P (wordi|T) or P (wordi, posi|T) is multiplied by a certain weight

if the value is found in the training corpus. If it is not found in the training corpus

but the lexicon contains T as a possible semantic type for wordi, then P (wordi|T)

or P (wordi, posi|T) is multiplied by a smaller weight. These different weights are

intended to ensure that entries in the training corpus receive the most weight, lexicon

entries receive the next largest weight, and the word-tag pairs that do not occur in

either the corpus or the lexicon are given the smallest frequency value. Similarly,

for the n-gram frequency calculation, if the n-gram does not occur in the training

corpus, then a default value is given. If it does occur in the training corpus, then

the frequency is multiplied by a constant to give more weight to the n-gram that has

been observed before. So, for example, the bigram equation becomes:

scoreT =
k1 ∗ # occurrences of wordi/T

occurrences of T
∗

k2 ∗ # occurrences of tagi−1, T

occurrences of tagi−1

(4.9)

where k1 and k2 are the smoothing constants.

The trigram and tetragram equations are similar to the bigram equations, except

that they count the frequencies of semantic trigrams and tetragrams, respectively.

72

For trigrams, the equation to calculate a tag’s score, without the use of syntactic

data, was:

scoreT = P (wordi|T) ∗ P (T |tagi−2, tagi−1) (4.10)

where P (wordi|T) is calculated as before. P (T |tagi−2, tagi − 1) is the probability of

tag T occurring at word wordi, given that the tag for word wordi−2 is tagi−2 and the

tag for word wordi−1 is tagi−1. This value is calculated as follows:

P (T |tagi−2, tagi − 1) =
occurrences of tagi−2, tagi−1, tagi

occurrences of tagi−2, tagi−1

(4.11)

If the syntactic option is used, then P (wordi|T) becomes P (wordi, posi|T), as with

the bigram equation. The equations for tetragrams follow similarly, but involve the

previous three consecutive tags.

After each word from the beginning to the end of the nursing note is tagged in

this way, all of the consecutive words having the same semantic tag (either DIS-

EASE, MEDICATION, or SYMPTOM) are extracted and returned as output. For

example, if the note contains the text admitted for mental status changes, treated for

hypotension and the program tagged the words as:

admitted/OTHER

for/STOP

mental/SYMPTOM

status/SYMPTOM

changes/SYMPTOM

,/PUNCT

treated/OTHER

for/STOP

hypotension/DISEASE

then the phrases that would be extracted are mental status changes (as a symptom)

and hypotension (as a disease).

4.3.2 Best Path Algorithm

The other statistical algorithm that was explored was a Viterbi-based best path al-

gorithm. It was also implemented for bigrams, trigrams, and tetragrams. Instead

73

hypotensive on dopamine gtt

A A A A

B B B B

C C C C

D D D D

E E E E

semantic

tags <null>

words

Figure 4-2: The best-path algorithm calculates the most likely previous tag for every
possible tag for each word, using bigrams, trigrams, and tetragrams. Back pointers
are added from each word-tag entry to the most likely tag of the preceding word. The
most likely previous tag is calculated by maximizing the value of the scores calculated
in Section 4.3.1, multiplied by the score of the previous tag. After all back pointers
are created, the path with the highest score through the text is found by starting
from the last word of the text with the highest score, and following its back pointers
to the beginning.

of making a single forward pass through a nursing note, the path through the entire

note with the highest score is chosen. A two-dimensional array, backP trs, was used

to store back pointers from each possible semantic type of each word to the tag of the

previous word that gives the best score, using similar score calculations as those in the

forward-based method. See Figure 4-2 for a depiction of this structure as used in the

bigram implementation, where the back pointer at each node underneath a word refers

back to a node that is underneath the previous word. The cost of each node is the

score calculation for the given word wordi and tag T (i.e., P (wordi|T) ∗ P (T |tagi−1)

for bigrams), multiplied by the score of the node located at word wordi−1 and tag

tagi−1.

For trigrams and tetragrams, not only does the previous tag need to be stored as

a node, but all combinations of the previous n − 1 tags need to be stored, and the

score must be calculated for each possibility. Thus, the back pointer array is of size

numWords by numTagsn−1, where numWords is the total number of words in the

text, n is the size of the n-grams being used (2, 3, or 4), and numTags is the number

74

1 bestPath(note):

2 tokenize note into words
3 for each word wi in note

4 for each possible tag ti for wi

5 find tag ti−1 (for word wi−1) that gives best score
6 create edge from (wi−1,ti−1) to (wi,ti)
7 find best path through note

Figure 4-3: Pseudo-code showing the best path tagging algorithm, where each (word,
semantic tag) pair is a node, and scores are calculated for paths between nodes based
on n-gram probabilities. The best path through the nursing note is found using a
graph search algorithm similar to the one described in Chapter 3, except that here,
the best path is the path with the highest score.

of different possible semantic tags for each word, which in this implementation is four

(DISEASE, MEDICATION, SYMPTOM, and one of OTHER, PUNCT, NUM, or

STOP). Although the size of the array grows exponentially with n, only a subset of

the nodes at wordi−1 have to be considered when creating back pointers at wordi.

For example, in the tetragram implementation, at each possible node, every possible

combination of the previous two semantic tags and the current semantic tag is stored.

However, every node containing the n-gram sequence ABC must be preceded by a node

ending in the sequence AB, so only those preceding nodes are considered. Figure 4-3

shows a summary of how the best path algorithm works.

4.4 Testing and Results

A series of automated tests was run to evaluate the relative performance of each of the

extraction algorithms, using their various configurations. For both the foward-based

and best-path algorithms, the bigram, trigram, and tetragram methods were tested,

both with and without syntactic data. For each test, a random set of 20 notes was

extracted out of the 252 total gold standard nursing notes to be used as the testing

set, and the other 232 notes were used as the training set. Each test was repeated

five times, using different randomly chosen training and testing sets. The smoothing

constants were chosen at run time with some trial and error (developing a rigorous

75

Table 4.5: The phrase-based and word-based precision (p) and recall (r) for the
forward-based extraction algorithm. Results are shown for bigrams (n=2), trigrams
(n=3), and tetragrams (n=4), with and without the use of syntactic data, for diseases,
medications, and symptoms.

Using Syntactic Not Using Syntactic
n Semantic pphrase rphrase pword rword pphrase rphrase pword rword

2 Diseases 58.2% 56.4% 66.4% 56.0% 60.1% 57.7% 68.8% 57.7%
2 Medications 64.1% 83.2% 65.5% 83.3% 67.3% 84.2% 68.8% 83.6%
2 Symptoms 46.0% 31.3% 71.2% 30.7% 48.9% 33.0% 75.2% 32.2%
2 Overall 62.8% 64.4% 72.7% 58.2% 65.2% 65.2% 75.4% 58.7%
3 Diseases 51.9% 57.6% 58.9% 59.5% 56.0% 58.7% 62.6% 59.8%
3 Medications 67.9% 83.6% 69.7% 83.5% 70.4% 85.3% 72.2% 84.5%
3 Symptoms 46.6% 34.9% 67.1% 33.7% 49.2% 36.6% 69.5% 34.6%
3 Overall 62.6% 65.5% 71.2% 59.5% 65.4% 66.8% 73.5% 59.9%
4 Diseases 44.3% 58.0% 51.5% 59.9% 47.4% 59.2% 54.2% 60.2%
4 Medications 68.8% 82.2% 71.0% 83.3% 71.5% 84.1% 73.6% 84.2%
4 Symptoms 42.3% 35.6% 63.4% 35.9% 43.5% 36.9% 64.2% 36.8%
4 Overall 59.3% 65.5% 68.4% 60.6% 61.5% 66.8% 70.4% 61.3%

method to find the best smoothing constants was out of the scope of this project).

The average values of the precision and recall for the different configurations are

shown in Tables 4.5 and 4.6. After reviewing the output of the algorithm, it seemed

like many of the phrases were successfully extracted, but extracted into the wrong

category. Thus, the overall precision and recall are also given, based on the total

phrases and words extracted, disregarding which of the specific semantic categories

they were tagged as.

Medications generally were tagged with both the highest precision and recall, and

symptoms were usually the most difficult to extract. Running each of the n-gram

methods using a fixed set of smoothing constants produced better results for smaller

n. The addition of the Brill syntactic tags caused some phrases to be joined together,

such as rales and bases forming the phrase rales in bases. However, it generally did

not improve the overall precision and recall of the algorithm.

76

Table 4.6: The phrase-based and word-based precision (p) and recall (r) for the best-
path extraction algorithm. Results are shown for bigrams (n=2), trigrams (n=3),
and tetragrams (n=4), with and without the use of syntactic data, for diseases, med-
ications, and symptoms.

Using Syntactic Not Using Syntactic
n Semantic pphrase rphrase pword rword pphrase rphrase pword rword

2 Diseases 35.8% 55.9% 33.5% 67.8% 38.6% 57.0% 35.7% 67.6%
2 Medications 70.1% 79.1% 72.2% 81.4% 72.7% 80.5% 74.7% 81.7%
2 Symptoms 42.0% 38.0% 49.4% 53.1% 44.1% 39.0% 52.6% 53.6%
2 Overall 56.4% 65.0% 55.0% 71.7% 59.3% 66.2% 58.3% 71.6%
3 Diseases 24.8% 56.7% 27.1% 70.1% 27.0% 57.5% 29.2% 69.4%
3 Medications 69.3% 80.3% 71.8% 83.7% 71.0% 81.8% 73.7% 84.3%
3 Symptoms 40.2% 40.0% 49.2% 53.4% 40.1% 39.6% 50.4% 53.8%
3 Overall 49.2% 66.8% 51.0% 73.4% 51.0% 67.1% 53.2% 72.9%
4 Diseases 21.8% 54.4% 21.2% 68.8% 23.7% 54.2% 22.7% 66.8%
4 Medications 69.5% 81.4% 71.6% 83.2% 69.4% 82.0% 71.8% 83.5%
4 Symptoms 38.2% 42.6% 47.4% 53.6% 40.0% 44.4% 48.7% 54.6%
4 Overall 46.7% 67.6% 46.7% 73.5% 48.6% 68.2% 48.8% 73.3%

4.5 Discussion

One of the main weaknesses of the statistical methods presented is that they do not use

proper smoothing constants and the extracted output can change very significantly

if a small change is made to one of the weights. To find the values that best fit the

data, it is often necessary to perform some type of rigorous cross validation. The

simple trial and error method of guessing the smoothing constants was shown to be

inadequate, and is something that should be improved upon in future algorithms.

There are many free or open source tools available that perform more complicated

statistical training, and although they were not explored in this research, they could

potentially be useful for phrase extraction, provided there is a large enough training

corpus.

Adding the part of speech of each word as an extra observation point lowered the

precision and recall in almost all cases. There may be several possible reasons for

the negative effect of incorporating the syntactic observations. The Brill tagger was

77

trained on more formal and well-formed text than the nursing notes, and thus the

syntactic tags assigned to the gold standard corpus of nursing notes might not have

been accurate. There was no human validation done on the syntactic tags, but future

work might involve re-training the Brill tagger using a corpus of nursing notes tagged

with human-verified parts of speech.

The use of a relatively small training corpus may have been a disadvantage, be-

cause there was not a large amount of semantic data that could be used to train the

statistical algorithms. The corpus of nursing notes contained only 50,000 tokenized

words, whereas the Wall Street Journal corpus that the Brill tagger was trained on

contains millions of words. However, the extraction algorithms were still able to find

the majority of phrases using this small training corpus, which suggests that there is

not as much variation in the language used in the nursing notes as there is in more

formally structured text.

One possible improvement to the algorithm might be the use of a larger semantic

tagset. Experiments were done using a lexicon containing a larger number of different

semantic types, such as procedures, modifiers, and body parts. For each of the

statistical methods, every possible semantic type was considered for each word. The

results of the extraction algorithm improved slightly by using these extra semantic

types, but the use of these additional tags was not further explored.

From the test results, the recall is very low (30-50%) in many cases, for both

symptoms and diseases, possibly because they are generally more complex in structure

than medications. The problem might also have been caused by the fact that many

words in the nursing notes did not match exactly with words in the lexicon or training

set. Another option might be to use a tool such as the Porter Stemmer [5] to stem

all words in the text and training corpus, and then search on the stemmed words.

However, judging by a small test, the use of the Porter Stemmer only slightly increases

the recall (i.e., by about 1%), while lowering the precision drastically (by 10-15%).

Overall, the results show that the statistical algorithms are promising, in that

the majority of phrases were extracted successfully (even with a relatively small gold

standard corpus), and it only took at most a few seconds (on a Pentium III machine)

78

to process each note. With a larger and more accurately tagged gold standard corpus,

along with better ways to estimate smoothing constants, such algorithms can be very

useful in real-time analysis of textual patient data.

79

80

Chapter 5

Conclusions and Future Work

In this project, methods to code free-text medical phrases and extract phrases from

unstructured notes have been developed and evaluated. The free-text coding al-

gorithm translates unstructured phrases, such as those used in the clinical nursing

notes, into standardized concept identifiers. This algorithm can also be used in con-

junction with additional training data and statistical algorithms, to automatically

extract phrases of interest from the nursing notes.

It has been shown that the automatic coding algorithm performs rapidly enough

to be used in a real-time setting, and when the vocabulary is expanded to include the

entire UMLS, it outperforms MMTx, an existing open source tool. The interactive

version of the coding algorithm is likewise efficient and able to find most concepts on

the first try. It is currently being used by clinical experts in an annotation setting.

There are possible additions that can be made to the user interface, such as filter-

ing by semantic category and searching by more fine-grained relationship types (e.g.,

associated morphology of or has procedure site). There is also room for improvement

in other areas of the algorithm, such as having more intelligent spell checking and

abbreviation expansion. Test results show that limiting the medical vocabulary to

SNOMED-CT may not be ideal for annotation, because many commonly used medi-

cation names are not included in the SNOMED-CT vocabulary. However, it has been

shown that incorporating a medication vocabulary or searching on the entire UMLS

for related concepts are simple solutions to this limitation. Although it was out of

81

the scope of this project, it would also be useful in the future if the algorithm could

look at numerical values and measurements and be able to infer from them that a

patient exhibits certain symptoms or problems.

The algorithms created for automatic clinical phrase extraction are efficient and

can potentially be useful to clinicians; however, the algorithms require a lot of supple-

mental data, including lexicons and a training corpus of manually tagged data. Only

a subset of phrase types (diseases, medications, and symptoms) was extracted in this

project, but extracting other types of phrases (such as procedures and body parts)

might also be useful. Another useful extension is to code the extracted phrases into

UMLS concepts, based on the context in which they appear. Some helpful additions

to the algorithm might include the use of existing open source tools that have more

sophisticated methods to guess smoothing constants, or possibly the use of author

recognition tools along with the training data to better decipher the meaning of the

notes.

Even though the gold standard corpus used in the tests was relatively small, the

majority of medication, disease, and symptom names were successfully extracted from

the tested nursing notes, and the algorithms performed quickly enough to be used

in a real time setting. In the future, a larger and more consistently tagged corpus

might improve results further. The coding and extraction techniques that have been

developed will hopefully be useful tools in future medical applications.

82

Appendix A

Sample Re-identified Nursing

Notes

O: 58 YEAR OLD FEMALE ADMITTED IN TRANSFER FROM CALVERT HOSPITAL FOR MENTAL

STATUS CHANGES POST FALL AT HOME AND CONTINUED HYPOTENSION AT CALVERT

HOSPITAL REQUIRING DOPAMINE; PMH: CAD, S/P MI 1992; LCX PTCA; 3V CABG WITH

MVR; CMP; AFIB- AV NODE ABLATION; PERM PACER- DDD MODE; PULM HTN; PVD;

NIDDM; HPI: 2 WEEK HISTORY LEG WEAKNESS; 7/22 FOUND BY HUSBAND ON FLOOR-

AWAKE, BUT MENTAL STATUS CHANGES; TO CALVERT HOSPITAL ER- TO THEIR ICU;

HEAD CT- NEG FOR BLEED; VQ SCAN- NEG FOR PE; ECHO- GLOBAL HYPOKINESIS; EF

EST 20%; R/O FOR MI; DIGOXIN TOXIC WITH HYPERKALEMIA- KAYEXALATE, DEXTROSE,

INSULIN; RENAL INSUFFICIENCY- BUN 54, CR 2.8; INR 7 (ON COUMADIN AT HOME);

7/23 AT CALVERT- 2 FFP, 2 UNITS PRBC, VITAMIN K; REFERRED TO GH.

ARRIVED IN TRANSFER APPROX. 2130; IN NO MAJOR DISTRESS; DOPAMINE TAPER,

THEN DC; NS FLUID BOLUS GIVEN WITH IMPROVEMENT IN BP RANGE; SEE FLOW

SHEET SECTION FOR CLINICAL INFORMATION; A: NO HEMODYNAMIC COMPROMISE

SINCE TRANSFER; TOLERATING DOPAMINE DC; P: TREND BP RANGE; OBSERVE FOR

PRECIPITOUS HYPOTENSION.

ros:

neuro: a&ox3, mae. at times anxious, ativan x1 per pej w/ fair effect.

prn pain med for c/o ha.

cv: nsr -> st no ectopy. htn when anxious. denies cp. to fluro for (r)

basilic 4fr single lumen picc.

resp: sx for thick tan secretions. strong cough. pox 95-98. gi: tf

cont at goal. pos flatus no stool. fsbs tx w/ riss. denies n/v.

gu: u/o >60cc/h.

plan: to rehab when vent bed available. cont w/ current plan of care.

83

NPN

CCU

7 PM - 7 AM

VF ARREST C/B ANOXIC INJURY

CV HEMODYN STABLE LIDO D/C’D AT 0400..WITH UNIFOCAL PVCS ...AM K AND MG

PNDG...SBP 110-130’S/60’S...

RESP AC MODE ..RATE OF 12 ..OVERBREAHING 2-4 ..TV 650..40% 5

PEEP...SUCTIONED Q2-3 FOR MOD AMOUNTS OF TAN SXNS ..LUNGS COARSE ..

GI OGT CLAMPED ..MINIMAL OUTPUT ..NO STOOL

GU URINE OUTPUT QS ...

NEURO NO PURPOSEFUL MOVEMENT NOTEDPLS SEE FLOWSHEET FOR NEURO

ASSESSMENT ...

A HEMODYN STABLE OF ANTI ARRTHYMICS ..VENT IN PLACE

P AWAIT NEURO CONSULT ..FAMILY AT BEDSIDE

84

Appendix B

UMLS to Penn Treebank Tag

Translation

Table B.1: UMLS parts of speech translated to Penn Treebank
parts of speech.

sca agr Penn Description

adj

comparative JJR adjective, comparative
positive JJ adjective or numeral, ordi-

nal
positive;periph JJ adjective or numeral, ordi-

nal
superlative JJS adjective, superlative

adv

comparative RBR adverb, comparative
positive RB adverb
positive;periph RB adverb
superlative RBS adverb, superlative
Exceptions:
1. whereupon, whereof, whyever, why, whither, wherever, wherein, whereby, where,
whenever, whence, when, how, however should be tagged as WRB (WH-adverb)

conj - CC conjunction, coordinating
prep - IN preposition or conjunc-

tion, subordinating

det
- DT determiner
Exceptions:
1. what, whatever, which, whichever should be tagged as WDT (WH-determiner)
2. that should be tagged as both DT and WDT

modal - MD modal auxiliary

noun

count(thr plur) NNS noun, common, plural
count(thr sing) NN noun, common, singular

or mass
uncount(thr plur) NNS noun, common, plural

continued on the next page

85

blah blah (continued)
sca agr Penn Description

uncount(thr sing) NN noun, common, singular
or mass

Exceptions:
1. NNS should be changed to NNPS (noun, proper, plural) if LRPRP.fea=’proper’
2. NN should be changed to NNP (noun, proper, singular) if LRPRP.fea=’proper’

pron
- PRP pronoun, personal
Exceptions:
1. her, hers, his, its, mine, my, our, ours, their, theirs, your, yours should be tagged
as PRP$ (pronoun, possessive)
2. that, these, this, those, what, whatever, when, which, whichever, who, whoever,
whom, whomever, whatsoever should be tagged as WP (WH-pronoun)
3. whose should be tagged as WP$ (WH-pronoun, possessive)
4. her should be tagged as both PRP and PRP$

verb

infinitive VB verb, base form
past VBD verb, past tense
past part VBN verb, past participle
pres(fst sing, fst plur,
thr plur, second)

VBP verb, present tense, not
3rd person singular

pres(thr sing) VBZ verb, present tense, 3rd
person singular

pres part VBG verb, present participle or
gerund

aux

infinitive VB verb, base form
past VBD verb, past tense
past(fst plur, second,
thr plur)

VBD verb, past tense

past(fst plur, second,
thr plur):negative

VBD verb, past tense

past(thr sing, fst sing) VBD verb, past tense
past(thr sing,
fst sing):negative

VBD verb, past tense

past:negative VBD verb, past tense
past part VBN verb, past participle
pres(fst plur, second,
thr plur)

VBP verb, present tense, not
3rd person singular

pres(fst plur, second,
thr plur):negative

VBP verb, present tense, not
3rd person singular

pres(fst sing) VBP verb, present tense, not
3rd person singular

pres(fst sing, fst plur, sec-
ond, thr plur)

VBP verb, present tense, not
3rd person singular

pres(fst sing, fst plur, sec-
ond, thr plur):negative

VBP verb, present tense, not
3rd person singular

pres(thr sing) VBZ verb, present tense, 3rd
person singular

pres(thr sing):negative VBZ verb, present tense, 3rd
person singular

pres part VBG verb, present participle or
gerund

86

Bibliography

[1] GSpell. http://specialist.nlm.nih.gov/SpellingResources.html.

[2] IndexFinder demo. http://fargo.cs.ucla.edu/umls/demo.aspx.

[3] MetaMap Transfer (MMTx) Home. http://mmtx.nlm.nih.gov/.

[4] RxNorm. http://www.nlm.nih.gov/research/umls/rxnorm main.html.

[5] The Porter Stemming Algorithm. http://www.tartarus.org/martin/PorterStemmer/.

[6] Aggregating UMLS Semantic Types for Reducing Conceptual Complexity. In

Proceedings of MEDINFO 2001, volume 10(Pt 1), pages 216–220, 2001.

[7] A knowledge-based approach for retrieving scenario-specific medical text docu-

ments. Control Engineering Practice, Volume 13, Issue 9:1105–1121, September

2005.

[8] O. T. Abdala, G. D. Clifford, M. Saeed, A. Reisner, G. B. Moody, I. Henry, and

R. G. Mark. The annotation station: An open-source technology for annotating

large biomedical databases. Computers in Cardiology, 31:681–685, 2004.

[9] Omar T. Abdala. The Annotation Station: An open source technology for data

visualization and annotation of large biomedical databases. Master’s thesis, Mas-

sachusetts Institute of Technology, 2005.

[10] A. Aronson. Effective Mapping of Biomedical Text to the UMLS Metathesaurus:

The MetaMap Program. In Proceedings of the AMIA 2001 Annual Symposium,

pages 17–21, 2001.

87

[11] J. J. Berman. Pathology abbreviations and acronyms.

http://www.pathinfo.com/abbtwo.htm, May 2001.

[12] Neha Bhooshan. Classification of Semantic Relations in Different Syntactic

Structures in Medical Text using the MeSH Hierarchy. Master’s thesis, Mas-

sachusetts Institute of Technology, 2005.

[13] Eric Brill. A simple rule-based part-of-speech tagger. In Proceedings of ANLP-92,

3rd Conference on Applied Natural Language Processing, pages 152–155, Trento,

IT, 1992.

[14] Friedman C. Towards a comprehensive medical language processing system:

methods and issues. In Proceedings of the AMIA 1997 Annual Fall Symposium,

pages 595–599, 1997.

[15] Friedman C. A Broad-Coverage Natural Language Processing System. In Pro-

ceedings of the AMIA 2000 Annual Symposium, pages 270–274, 2000.

[16] Friedman C, Alderson PO, Austin JH, Cimino JJ, and Johnson SB. A general

natural-language text processor for clinical radiology. Journal of the American

Medical Informatics Association, 1(2):161–174, 1994.

[17] Jean Carletta. Assessing Agreement on Classification Tasks: The Kappa Statis-

tic. Computational Linguistics, 22(2):249–254, 1996.

[18] College of American Pathologists. SNOMED International.

http://www.snomed.org/index.html.

[19] College of American Pathologists. SNOMED Clinical Terms Technical Specifi-

cation: Revision 23, 2000.

[20] Margaret Douglass. Computer-Assisted De-Identification of Free-text Nursing

Notes. Master’s thesis, Massachusetts Institute of Technology, 2005.

[21] Margaret Douglass and Jennifer Shu. Information Extraction from Medical Pa-

tient Notes. MIT 6.863 class project, May 2004.

88

[22] Lexical Systems Group. http://specialist.nlm.nih.gov/LexSysGroup/index.html.

[23] Lexical Systems Group. Lexical Tools, 2005 Release.

http://umlslex.nlm.nih.gov/lvg/current/index.html.

[24] Daniel Jurafsky and James H. Martin. Speech and Language Processing, chapter

5.9. Prentice-Hall, Inc., 2000.

[25] NLM Lexical Systems Group homepage. http://umlslex.nlm.nih.gov/.

[26] Link Grammar Parser. http://bobo.link.cs.cmu.edu/link/.

[27] William Long. Extracting Diagnoses from Discharge Summaries.

[28] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building

a Large Annotated Corpus of English: The Penn Treebank. Computational

Linguistics, 19(2):313–330, 1994.

[29] R. G. Mark. Integrating Data, Models and Reasoning in Critical Care, 2003.

National Institute of Biomedical Imaging and Bioengineering Proposal R01

EB001659.

[30] MedLEE homepage. http://lucid.cpmc.columbia.edu/medlee/.

[31] National Library of Medicine. About the UMLS Resources.

http://www.nlm.nih.gov/research/umls/about umls.html.

[32] National Library of Medicine. The SPECIALIST LEXICON: UMLS Documen-

tation, 2004. http://nls4.nlm.nih.gov:8000/SPECIALIST/UMLSLexDocs/.

[33] National Library of Medicine. UMLS Knowledge Sources,

15th Edition - April Release: 2004AA Documentation, 2004.

http://www.nlm.nih.gov/research/umls/archive/2004AA/UMLSDOC.html.

[34] National Institutes of Health. http://privacyruleandresearch.nih.gov/.

89

[35] National Institutes of Health. Policy and Procedures for De-Identification of Pro-

tected Health Information and Subsequent Re-Identification. NIH, 2004. Docu-

ment 45 CFR 164.514(a)-(c).

[36] Penn Treebank Tag set. http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html.

[37] Zou Q, Chu WW, Morioka C, Leazer GH, and Kangarloo H. IndexFinder: A

Method of Extracting Key Concepts from Clinical Texts for Indexing. In Pro-

ceedings of the AMIA 2003 Annual Symposium, pages 763–767, 2003.

[38] M. Saeed, C. Lieu, G. Raber, and R.G. Mark. MIMIC II: A Massive Temporal

ICU Patient Database to Support Research in Intelligent Patient Monitoring.

Computers in Cardiology, 29:641–644, 2002.

[39] N. Sager, M. Lyman, C. Bucknall, N. Nhan, and L. Tick. Natural Language

Processing and the Representation of Clinical Data. Journal of the American

Medical Informatics Association, 1:142–160, 1994.

[40] SourceForge.net. Jazzy - Java Spell Check API.

http://sourceforge.net/projects/jazzy.

[41] P Szolovits. Adding a Medical Lexicon to an English Parser. In Proceedings of

the AMIA 2003 Annual Symposium, pages 639–643, 2003.

90

