
Improving the Quality of ECGs Collected Using Mobile Phones:
The PhysioNet/Computing in Cardiology Challenge 2011

Ikaro Silva1,2, George B Moody1, Leo Celi1,2

1Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
2Sana Mobile, Cambridge, MA, USA

Abstract

The aim of the PhysioNet/Computing in Cardiology
Challenge 2011 was to develop an efficient algorithm able
to run within a mobile phone, that can provide useful feed-
back in the process of acquiring a diagnostically useful 12-
lead ECG recordings. PhysioNet provided a large set of
ECG records for use in the Challenge, together with an
open-source sample application that can run on an An-
droid phone, and can classify ECGs as acceptable or unac-
ceptable. A total of 49 teams and individuals participated
in challenge, which entailed three events. In event 1, par-
ticipants developed algorithms for classifying ECGs with
respect to quality, and submitted their algorithms’ clas-
sifications of 500 ECGs, obtaining 89-93% accuracy us-
ing variety of methods. In event 2, participants submitted
Java implementations of their algorithms to be used in the
sample mobile application; we tested these in two refer-
ence mobile phones using the same data set and scoring
method as in event 1, obtaining 80-91% accuracy. Event
3 was similar to event 2, but was conducted using a set of
ECGs not available for study by the participants, and the
scoring was a function of both accuracy and mobile phone
processing speed; in this event, similar levels of accuracy
were achieved with average execution times of less than 2
seconds on the reference phones.

1. Introduction

In addition to the burden of communicable diseases such
as malaria, tuberculosis and HIV, developing countries are
facing a steady growth in the prevalence of chronic, non-
communicable diseases, including heart disease and can-
cer. Mobile health, or the use of cellphones to support
clinical care, provides an opportunity to expand the reach
of quality health-care to address both types of disease bur-
dens even in the most remote villages. Cellphones are used
more than any other modern technology throughout the de-
veloping world[1,2]. The ITU estimates that in 2010, there
were 5.3 billion mobile subscribers (77% of the worlds

population), with 67.6 mobile phones per 100 persons in
the developing world, and 116.1 in developed nations[3].
It is no surprise that mobile health is being touted as the
biggest breakthrough in health systems improvement in
developing nations[4]. The positive potential for mobile
health is huge, but not without risks. If expanded and de-
centralized access to health care results in an increase in
the demand for expert diagnosis, and the quality of the
data needing interpretation is not maintained, a loss of effi-
ciency will follow. If the capacity of the health care system
to provide timely expert interpretation is exceeded, the re-
sult may be missed opportunities and a net decrease in the
number of patients served, even as the patient population
increases. Rigorous quality control is thus essential, not
only for accurate diagnosis, but also to preserve, and if pos-
sible to enhance, the efficiency and capacity of the health
care system to serve its patients.

Compact and inexpensive battery-powered ECG recorders
can transmit diagnostic ECGs via Bluetooth to mobile
phones, which can relay them to experts for interpreta-
tion. In developing nations, where the experts are concen-
trated in urban hospitals, this technology can permit un-
derserved rural populations to benefit from otherwise in-
accessible expertise. If this possibility is to become real-
ity, however, it will be necessary for health care providers
in underserved regions to become proficient in collecting
high-quality ECGs, to avoid the risk of saturating the ex-
perts’ capacity. Furthermore, since expert interpretation
may not be immediately available, it is important to obtain
a recording that can be interpreted without waiting for an
expert opinion on its quality, since it may be difficult to ob-
tain another ECG on another day from a patient who may
live far from a clinic.

For these reasons, the aim of the PhysioNet/Computing
in Cardiology Challenge 2011 is to encourage the develop-
ment of software that can run in a mobile phone, recording
an ECG and providing useful feedback about its quality.
Ideally, the software should be able to indicate within a
few seconds, while the patient is still present, if the ECG is
of adequate quality for interpretation, or if another record-



ing should be made. The software should identify com-
mon problems (such poor skin-electrode contact, external
electrical interference, and artifact resulting from patient
motion) and either compensate for these deficiencies or
provide guidance for correcting them. Within the context
of this challenge, however, submissions were scored only
with respect to how well their quality assessments of spe-
cific test ECGs predicted human assessments of quality,
and (in one event) the time required for the algorithm to
make a classification.

2. Methods

2.1. Challenge Data Set

The data used for the PhysioNet/CINC 2011 Challenge
consisted of 2,000 twelve-lead ECGs, each 10 seconds
long, with standard diagnostic bandwidth (0.05-100 Hz).
The 12 leads (I, II, III, aVR, aVF, aVL, V1, V2, V3,
V4, V5, and V6) were obtained simultaneously; each was
recorded at 500 samples per second, 16 bits per sample,
with 5 µV resolution.

2.2. ECG Human Annotation

The ECGs were manually annotated by a group of 23
volunteer annotators, who identified themselves as 2 cardi-
ologists, 1 (non-cardiologist) physician, 5 ECG analysts, 5
others with some experience reading ECGs, and 10 volun-
teers who had never read ECGs previously. Each annotator
used a web browser to view and grade a random sequence
of ECGs from the Challenge data set. We were able to
estimate intra-observer variability, since most of the anno-
tators graded a few of the ECGs more than once as a result
of the random selection process.

The annotators were asked to give an overall assessment
of each selected 12-lead ECG (i.e. all 12 leads, not each
signal or portion of a signal individually), by assigning one
of five possible letter grades to it: A (an outstanding record-
ing with no visible noise or artifact; such an ECG may be
difficult to interpret for intrinsic reasons, but not technical
ones); B (a good recording with transient artifact or low-
level noise that does not interfere with interpretation; all
leads recorded well); C (an adequate recording that can
be interpreted with confidence despite visible and obvious
flaws, but no missing signals); D (a poor recording that
may be interpretable with difficulty, or an otherwise good
recording with one or more missing signals); or F (an un-
acceptably poor recording that cannot be interpreted with
confidence because of significant technical flaws). Each
grade represented the observer’s assessment of the entire
ECG record (10 seconds and 12 channels), as an overall
measure of quality.

The letter grades were assigned these numerical values:
A = 0.95, B = 0.85, C = 0.75, D = 0.6 and F = 0. For each
ECG, we calculated the average of all grades, and gave it
a reference quality classification of Acceptable (if two or
more grades were available, the average grade ≥ 0.7, and
no more than one grade was F), Unacceptable (if two or
more grades were available, and the average grade < 0.7),
or Indeterminate (otherwise; see figure 1).

Figure 1. An Indeterminate ECG. Most of those who
graded it gave it a C or better, but one gave it an F. Cases
such as this one were not used to calculate scores in any
Challenge event.

Each ECG was assigned randomly to one of three
groups (training set A: 1000 ECGs, for which preliminary
classifications were provided in April, and final classifica-
tions in July; test set B: 500 ECGs used in events 1 and
2, for which classifications were withheld; and set C: 500
ECGs used in event 3 but not available to participants).

2.3. Scoring

For events 1 and 2, the score for each entry was the frac-
tion of correctly classified Acceptable and Unacceptable
ECGs in set B (Indeterminate ECGs were excluded). In
event 1, participants were ranked by the best final score
obtained in up to five attempts.

In events 2 and 3, each participant submitted a single
entry consisting of a Java module to be incorporated into
an Android mobile application provided by PhysioNet. We
tested each entry using test sets B (for event 2) and C (for
event 3) by running it on two mobile phones running An-
droid 2.1: a Motorola Defy (for ranking the entries in a
controlled environment on a phone without network ser-



vice or optional applications, but with floating-point hard-
ware), and an HTC Hero 200 (not used for ranking the en-
tries, but to estimate real-world performance using a typi-
cal phone with several applications installed, network ser-
vice, without floating-point hardware).

The scoring for event 3 entries was calculated using the
function

scoreevent3 = accuracy · e−(t−0.5)/10) (1)

where t is the execution time (in seconds) on the Android
phone and accuracy is the percentage of correctly iden-
tified Acceptable and Unacceptable ECGs (as in events 1
and 2, but using test set C). The first time constant, 0.5 sec-
onds, was chosen to reflect an ideal target speed time; thus
the exponential function improves the score of an entry that
requires less than 0.5 seconds on average. The second time
constant, 10 seconds, reflects the length of an ECG; getting
the last 10% in accuracy is not worth more than 10 seconds
of execution time if it takes only 10 seconds to record an-
other ECG.

3. Results

A total of 8,327 grades were obtained. In all 1,733
ECGs were classified as Acceptable or Unacceptable, and
267 as Indeterminate. In nearly all of the latter group, only
a single grade was available; divided opinions, such as in
Figure 1, were very rare. Table 1 summarizes the consis-
tency of the annotators’ grades as a function of experience
level, showing a high degree of self-consistency, consis-
tency with other observers at the same and at different ex-
perience levels, and consistency with the reference classi-
fications regardless of experience level.

In event 1, the top scores were obtained by the team of
Xia et al.[5] with 0.932, followed closely by Li and Clif-
ford[6] with 0.926, and 7 other participants who all scored
0.9 or better. In event 2, Xia et al. also had the top result of
0.914, Moody[7] scored 0.896, and others scored between
0.833 and 0.880. In event 3, Hayn et al.[8], with 0.873,
and Chudacek et al.[9], with 0.872, achieved the best re-
sults, with others scoring between 0.791 and 0.845.

Figure2 shows the average processing time on a mobile
phone vs accuracy for the algorithms submitted to Event
3. Several of the most accurate algorithms require 0.5 sec-
onds or less on the reference (Motorola) phone, or about
1.5 seconds or less on the control (HTC) phone; more
accurate results were not obtained by longer-running en-
tries, demonstrating that good agreement with the refer-
ence quality classifications can be achieved within reason-
able processing times, even on a phone that is running
other applications, has a network connection, and lacks
floating-point hardware.

Table 1. Consistency of grades, by experience level. Intra:
mean intra-observer consistency (the fraction of grades
given by the same annotator to the same ECG at differ-
ent times that agree with each other); Inter: mean inter-
observer consistency (the fraction of grades that agree with
those given by others with the same experience level, ex-
cluding ECGs with fewer than 3 grades); Accuracy: the
fraction of grades consistent with reference quality classi-
fications (A, B, and C are consistent with Acceptable, and
D and F are consistent with Unacceptable; Indeterminate
ECGs and those graded by fewer than 3 annotators are ex-
cluded). Random: Monte Carlo simulation of 1000 runs of
random grades on the same ECGs.

Level Intra Inter Accuracy
None 0.945 0.946 0.929
Some 0.947 0.916 0.977
Analyst 0.971 0.948 0.938
Cardiologist 0.980
Physician 0.952
All 0.954 0.949 0.921
Random 0.75 0.72 0.69
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Figure 2. Execution time vs. accuracy of event 3 entries.

4. Discussion and conclusions

The top competitors employed a variety of techniques,
using a wide range of features including entropy [5],
higher order moments[6], filtering residues[10], signal-to-
noise ratio[8, 11], regularity[12], and intra-lead informa-
tion[6,12,13]. The classification methods used in the chal-
lenge included decision trees[14, 15], support vector ma-
chines[6, 16], fuzzy logic[17], and heuristic rules[7, 18].

A difficult task in the challenge was detection of elec-
trode misplacement. This was not explicitly defined as a
criterion for rejecting an ECG that could be interpreted
with confidence. While it is possible that the human anno-
tators with little experience ignored or were not aware of



electrode misplacements resulting in lead reversals, the ac-
curate detection of such reversals is not without some dif-
ficulties. Although 149 records (about 10% of the records
available to the competitors) were identified as having
likely electrode misplacement by one or more participants,
the inter-observer consistency of these identifications was
very low (at most 23%). An independent algorithm for
electrode reversal detection was run by the PhysioNet or-
ganizers on the dataset, and comparison of the algorithm
with the submitted list from the competitors yielded a con-
sistency of 36% at most, and a false detection rate of
at least 63%. In addition, from a small intersection of
the records submitted by the competitors and the records
graded by the physician expert, who had a strong back-
ground in ECG analysis, none of the three records were
classified as unacceptable by the expert. The difficulty in
detecting misplaced electrodes is compounded by the fact
that certain clinical conditions, such as right ventricular
hypertrophy or right axis deviation, can yield abnormal
electrical vector projections when electrodes are placed
acurately[19].

Overall, the PhysioNet/Computing in Cardiology Chal-
lenge 2011 shows promising results for fast and accurate
ECG quality control on a mobile platform. The open-
source Java code and data will remain available for those
interested in improving or implementing the algorithms,
and is a step toward extending the reach of high-quality
health care affordably and efficiently using mobile phone
technology.
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